Modulation and Mediation of Cancer by Vitamins

147 figures, 1 color plate, and 83 tables, 1983

KARGER

S. Karger • Basel • München • Paris • London • New York • Tokyo • Sydney

National Library of Medicine, Cataloging in Publication
Modulation and mediation of cancer by vitamins
1. Neoplasms - drug therapy - congresses 2. Vitam therapeutic use - congresses
QZ 267 M692 1982
ISBN 3-8055-3526-0

All rights reserved
No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopymg, or by any information storage and retrieval system, without permission in writing from the publisher.

© Copyright 1983 by
S Karger AG, P.O Box, CH-4009 Basel (Switzerland)
Printed in Switzerland by Thür AG Offsetdruck, Pratteln

ISBN 3-8055-3526-0

Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

Contents

Preface IX

I. Carcinogenesis

Boutwell, R.K. (Madison, Wise.): Biology and Biochemistry of the Two-Step Model of Carcinogenesis 2
Slaga, T.J. (Oak Ridge, Tenn.): Multistage Skin Carcinogenesis and Specificity of Inhibitors 10
Flavin, D.F.; Kolbye, A.C., Jr. (Washington, D.C.): Nutritional Factors with the Potential to Inhibit Critical Pathways of Tumor Promotion 24

II. Prevention of Cancer by Vitamins

Greenwald, P.; Schreiber, G. (Bethesda, Md.): Perspectives on Chemoprevention in Man 40
A. Vitamin A
Moon, R.C.; McCormick, D.L.; Mehta, R.G. (Chicago, 111.): Chemoprevention of Animal Tumors by Retinoids 47
Morrison, D.G.; Moyer, R.C.; Lynd, F.T.; Rogers, W.; Esparza, R.J.; Bondurant, J.J.; Moyer, M.P. (San Antonio, Tex.): Prevention of Fiberglass-Induced Lung Hyperplasia, Metaplasia and Neoplasia by Vitamins A and C (with Color Plate I) 58
Lowe, N.J.; Connor, M.J.; Breeding, J. (Los Angeles, Calif.): Inhibition of Ultraviolet-B-Induced Epidermal Ornithine Decarboxylase and Carcinogenesis by Topical Retinoic Acid 78
Shearer, R.W. (Issaquah, Wash.): Chemoprevention of Azo-Dye-Induced Liver Carcinogenesis in the Rat by a Natural Carotenoid 89

B. Vitamin C and Vitamin E
Bright-See, E.; Newmark, H.L. (Toronto, Ont.): Potential and Probable Role of Vitamin C and E in the Prevention of Carcinogenesis 95

VI Contents

Peters, J.H.; Winant, R.C.; Mortelmans, K.E.; Riccio, E.S.; Marx, N.; Spanggord, R.J.; Sauberlich, H.E. (Menlo Park, Calif./San Francisco, Calif.): Effects of Ascorbic and Erythorbic Acids on the Ames/Salmonella Assay of Promutagens, Mutagens and Human Urine Concentrates 104

Benedict, W.F.; Wheatley, W.L.; Jones, P.A. (Los Angeles, Calif.): The Use of Ascorbic Acid for Selection of Transformed Cells with Differences in Tumorigenicities and Anchorage-Independent Growth: Implications for Chemoprevention 114

Srinivasan, V.; Jacobs, A. J.; Simpson, S.A.; Weiss, J.F. (Bethesda, Md.): Radioprotection by Vitamin E: Effects on Hepatic Enzymes, Delayed Type Hypersensitivity, and Postirradiation Survival of Mice 119

Liehr, J.G.; Wheeler, W.J.; Ballatore, A.M. (Houston, Tex.): Influence of Vitamin C on Estrogen-Induced Renal Carcinogenesis in Syrian Hamster 132

Leibovitz, B.; Schlesser, J. (Portland, Oreg.): Effect of L-Ascorbic Acid on Leukemia Development and Breast Cancer in Various Inbred Strains of Mice 140

HI. Treatment of Cancer by Vitamins: Experimental Models

A. Vitamin A: Biochemical Effects
Wolf, G.; Levin, L.V.; Bolmer, S.D. (Cambridge, Mass.): Multiple Functions of Vitamin A: Nuclear and Extranuclear. A Review 146

Sani, B.P.; Banerjee, C.K. (Birmingham, Ala.): Cellular Receptor Mediation of the Action of Retinoic Acid. 153

Russell, D.H.; Frasier-Scott, K.F. (Tucson, Ariz.): Inhibition of Ornithine Decarboxylase Activity by Retinol in Chinese Hamster Ovary Cells May Be Mediated by Transglutaminase 162
Jetten, A.M. (Bethesda, Md.): Modulation of Cell Growth and Differentiation by Retinoids and Their Mechanisms of Action 177

Giese, N.A.; Lindell, T.J. (Tucson, Ariz.): The Effect of Retinoic Acid on Cellular Growth and RNA Metabolism in Mouse 3T6 Cells 187

Durham, J.P.; Emler, C.A.; McClung, J.K.; Butcher, F.R.; Fontana, J.A. (Morgantown, W.Va.): Differentiation of Human Promyelocytic Leukemia Cells (HL60) by Retinoic Acid: Protein Kinases and Protein Phosphorylation 194

Bolmer, S.D.; Wolf, G. (Cambridge, Mass.): Retinoic Acid Stimulates Fibronectin Production in Mouse Skin Tumors 204

B. Vitamin A: Cellular Effects

Sidell, N.; Worth, G.D.; Seeger, R.C. (Los Angeles, Calif./Sepulveda, Calif.): Evidence of the Ability of Retinoic Acid to Regulate the Phenotypic Expression of Human Neuroblastoma 228

Douer, D.; Koeffler, H.P. (Los Angeles, Calif.): Effect of Retinoids on Normal and Abnormal Hematopoiesis 236

C. Vitamin C and Vitamin E
Prasad, K.N.; Rama, B.N. (Denver, Colo.): Modification of the Effect of Pharmacological Agents on Tumor Cells in Culture by Vitamin C and Vitamin E 244

Park, C.H. (Kansas City, Kans.): Growth-Modulation of Human Leukemic Colony-Forming Cells in vitro by L-Ascorbic Acid 266

Sethi, V.S.; Surratt, P. (Winston-Salem, N.C.): Increased Excretion of Vincristine and Vinblastine in Rhesus Monkeys by Ascorbic Acid 270

Contents VII

D. Vitamin D, Vitamin K, and Other Micronutrients
Chlebowski, R.T.; Block, J.B.; Dietrich, M.F. (Torrance, Calif.): Vitamin K Effects on Cytotoxicity and DNA Biosynthetic Pathway Inhibition in Cancer 276
Eisman, J.A.; Frampton, R.J.; Sher, E.; Suva, L.J.; Martin, T.J. (Heidelberg, Vict.): Presence and Role of 1,25-Dihydroxyvitamin D Receptors in Human Cancer Cells 282
Kollmorgen, G.M.; Longley, R.E.; Kosanke, S.D.; Carpenter, M.P.; Tseng Loh, P.-M. (Oklahoma City, Okla./Iowa City, Iowa): Dietary Fat Stimulates Mammary Tumor Growth and Inhibits Immune Responses 287

IV. Clinical Trials of Vitamins

Rustin, G.J.S.; Newlands, E.S.; Bagshawe, K.D. (London): Trial of Etretinate in Patients with Solid Tumours 322
Uphouse, W.J.; Oishi, N.; Rundhaug, J. (Honolulu, Hawaii): Determination of Levels of Retinoic Acid Binding Protein in the Four Major Histologic Types of Human Lung Cancer 327
Sakamoto, A.; Chougule, P.B.; Prasad, K.N. (Los Angeles, Calif./Baltimore, Md./Denver, Colo.): Retrospective Analysis of the Effect of Vitamin A, C, and E in Human Neoplasms 330
Yonemoto, R.H. (Duarte, Calif.): Alteration of Cellular Response with Ascorbic Acid 334

Concluding Remarks: Future Perspectives 340

Subject Index 342
Preface

The importance of vitamins and other micronutrients in the maintenance of health has been appreciated for nearly a century. Information about the role of vitamins as basic modulators of biological and biochemical functions has been accumulated steadily but slowly. A heightened interest in vitamins and their derivatives as potential anticancer agents has taken place in the last 5-10 years, which reflects both an increase in our knowledge about the biochemical basis of biological processes such as differentiation and cancer and an increased interest in non-cytotoxic modification of cancer.

The mechanism(s) via which vitamins effect their action(s) in vivo have been clarified in part by a careful study of biochemical strategies utilized by these compounds. Discrete modulatory effects on cell function have been identified at the membrane, enzymatic, and nuclear levels, and binding to specific proteins may play an important effector role for several vitamins in mediation of cellular change. Predictable positive changes in hormonal and cellular immunological function are also produced. To understand the mechanism of action of vitamins, intensive investigations of the effect of individual vitamins on biochemical processes will be required. Our understanding of the interaction of vitamin A and its derivatives with cells has increased tremendously over the past decade, and this knowledge has provided the basis for new strategies to biological problems such as differentiation, carcinogenesis, and cancer.

We ask: Do different vitamins share similar biochemical effectors (specific cellular receptors, incorporation into membranes, inhibition of key regulatory enzymes)? Can one vitamin
potentiate the effect of another? Do vitamins modulate complementary immunological pathways?

Epidemiological observations about vitamins and other nutritional principles and laboratory investigations provide the background for asking several questions about the future of vitamins and cancer in humans:

(1) Numerous epidemiological studies suggest that the incidence of several types of epithelial cancers is inversely related to the level of serum vitamin A and/or \(-\text{carotene}.\) Extensive data indicates that vitamin A is critical for normal epithelial cell differentiation. Synthetic derivatives of vitamin A also inhibit cell proliferation and frequently stimulate cell differentiation and have an improved therapeutic index (efficacy/toxicity ratio) based on animal studies. Are intervention studies in humans at high risk of epithelial cancers or who already have preneoplasias warranted at this time? If so, in what conditions or diseases? With what agents - \(-\text{carotene, vitamin A, synthetic retinoids, other vitamins or compounds?}\)

(2) Basic principles of chemical and physical carcinogenesis have been formulated over the past two decades, and modifiers of both the initiation and promotion phase have been identified. Many substances including vitamins A, C, and E may be modifiers of these processes. Does the data indicate that intervention studies in high risk individuals are warranted? If so, with what group of individuals? With what agents?

(3) Laboratory investigations in vitro and in vivo indicate that the growth of many transformed
cells can be inhibited by biological response modifiers including vitamins, and in some cases evidence for differentiation was apparent. Also, several investigations in animals and a few in humans indicate that these compounds favorably affect the immune system. Should vitamins be studied clinically for activity in the adjuvant setting or against advanced cancers? If so, which vitamins? In combination with other immune modulators or chemotherapeutic drugs?

A large group of investigators from the sciences of cell biology, biochemistry, nutrition, epidemiology, and oncology have contributed to the broadening base of knowledge about vitamins. Individuals from these different disciplines only infrequently interact and, therefore, an interdisciplinary meeting which would provide a forum for interchange and collaboration seemed timely. This First International Conference on the Modulation and Mediation of Cancer by Vitamins was held in Tucson, Arizona, from February 23 to 27, 1982. The series of papers in these proceedings in part represent the key information exchanged, although they only hint at the intensity of this developing field of inquiry.

Frank L. Meyskens, Jr., MD
Kedar N. Prasad, PhD