Oral Sensory Mechanisms
Frontiers of Oral Physiology
Vol. 4

Editor
Yojiro Kawamura, Osaka

S. Karger • Basel • München • Paris • London • New York • Sydney

Oral Sensory Mechanisms

Editor
Yojiro Kawamura, Osaka

57 figures and 7 tables, 1983

S. Karger • Basel • München • Paris • London • New York • Sydney

Frontiers of Oral Physiology

Vol. 1: Physiology of Mastication. Y. Kawamura, Osaka (ed.)
Vol. 3: The Environment of the Teeth. D.B. Ferguson, Manchester (ed.)

National Library of Medicine, Cataloging in Publication
Oral sensory mechanisms
(Frontiers of oral physiology; v.4)
I. Kawamura, Yojiro II. Series
W1 FR946GP v.4 (WI 200 0635)
ISBN 3805535767

Drug Dosage
The author and publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the
constant flow of information relating to drug therapy and drug reactions, the reader is urged to
check the package insert for each drug for any change in indications and dosage and for added
warnings and precautions. This is particularly important when the recommended agent is a new
and/or infrequently employed drug.

All rights reserved
No part of this publication maybe translated into other languages, reproduced or utilized in any
form or by any means, electronic or mechanical, including photocopying, recording, microcopying,
or by any information storage and retrieval system, without permission in writing from the
publisher.

© Copyright 1983 by S. Karger AG, P.O. Box, CH4009 Basel (Switzerland)
Printed in Switzerland by gdz(Genossenschaftsdruckerei Zürich)
ISBN 3-8055-3576-7

Contents

Foreword .. IX

Physiology of Mechanical Senses of the Oral Structure
S. Skd, Chiba

Introduction ... 2

Sensory Nerve Endings in the Oral Mucosa 3

Morphological Types of the Endings 3

Merkel Cell-Neurite Complexes 4

Encapsulated and Unencapsulated Endings 6

Complex Unencapsulated Endings and Free Nerve Endings 9

Impulse Pattern of the Endings 9

Merkel Cell-Neurite Complexes 9

Encapsulated Endings ... 13

Complex Unencapsulated Endings and Free Nerve Endings
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Morphology of Trigeminal Subnucleus caudalis and Surrounding Reticular Formation</td>
</tr>
<tr>
<td>37</td>
<td>Marginal Layer</td>
</tr>
<tr>
<td>37</td>
<td>Substantia gelatinosa</td>
</tr>
<tr>
<td>38</td>
<td>Magnocellular Layer</td>
</tr>
<tr>
<td>39</td>
<td>Reticular Formation Surrounding Subnucleus caudalis</td>
</tr>
<tr>
<td>39</td>
<td>Nociceptive Neurons in Trigeminal Subnucleus caudalis and Surrounding Reticular Formation</td>
</tr>
<tr>
<td>44</td>
<td>Descending Pain Control System</td>
</tr>
<tr>
<td>44</td>
<td>Stimulation-Produced Analgesia</td>
</tr>
<tr>
<td>45</td>
<td>Endorphins</td>
</tr>
<tr>
<td>48</td>
<td>References</td>
</tr>
</tbody>
</table>

Oral Stereognosis and Oral Muscular Coordination Ability
H. Lundt, Göteborg/Stockholm

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>Introduction</td>
</tr>
<tr>
<td>56</td>
<td>Stereognosis and Oral Stereognosis (Definitions)</td>
</tr>
<tr>
<td>57</td>
<td>Role of Learning in Oral Stereognosis</td>
</tr>
<tr>
<td>57</td>
<td>Measuring Instruments and Methods</td>
</tr>
<tr>
<td>58</td>
<td>Role of the Observer</td>
</tr>
<tr>
<td>59</td>
<td>Test for Oral Recognition of Forms (RF Test)</td>
</tr>
<tr>
<td>59</td>
<td>Test Pieces</td>
</tr>
<tr>
<td>60</td>
<td>Dimensional Studies</td>
</tr>
</tbody>
</table>
Neural Mechanisms of Taste Function
T. Ymmoto, Osaka

Introduction ... 102
Taste Afferent System ... 103
Taste Receptors and Taste Nerves .. 103
Central Taste Pathways ... 104
Reflex Responses Elicited by Taste Stimuli 107
Salivary Secretion ..
107
Somatic Motor Responses ... 110
Information Processing at the Cortical Taste Area 115
Summary ...
122
References ...
124

Foreword

Published since 1974, the Frontiers of ORL Physiology series was inaugurated
as a means of introducing and developing a newly emerging
concept concerning the physiology of the stomatognathic system. This
concept stresses the value of a systematic, physiological approach as a
means of achieving improved understanding of oral functions. As a
biological science, 'oral physiology' explores basic mechanisms
through the physiological study of the stomatognathic system of living
organisms, including humans. Studies in this field are designed to yield
information on the physiological role and functional interrelations of
all organs, tissues, and constituents of the oral-mandibular-facial
The stomatognathic system in humans and animals is characterized by highly specialized functions and morphology, which are further distinguished by the obvious phylogenetic and ontogenetic differences of oral-mandibular structures. Furthermore, the stomatognathic system participates in a variety of significant physiological functions, including chewing, biting, sucking, lapping, swallowing, salivation, and speaking. The proper functioning of these oral activities is ensured by a series of highly coordinated actions involving various parts of the stomatognathic system.

Given this complexity, an adequate overview of oral functions requires systematic understanding of oral physiology, which has been the goal of volumes published in the Frontiers of Orl Physiology series. The particular emphasis of the series is apparent in the individual titles: Physiology of Mstiction (1974), Physiology of Orl Tissues (1976), and Environment of the Teeth (1980).

Orl Sensory Mechanisms is unquestionably the most ambitious project in the series. When making initial plans nearly 3 years ago, the editor hoped to compile a comprehensive work covering oral sensory mechanisms. Such an ambition precedes actual developments, and physiological research in this field has not yet proved sufficient to explain the mechanisms of coordination and interrelations of various oral sensory functions which make possible the integration of the proper functions of the stomatognathic system. The lack of sufficient physiological research resulted in a more precise focus on oral sensory mechanisms showing close association with clinical problems in dentistry. Topics selected for coverage include general mechanical sensory functions of the stomatognathic structures, stereognosis, mandibular position sense, oral-facial pain, and taste. The resulting volume marks the first time that these topics have been consolidated in a monograph oriented towards dentistry.

I do hope that this volume will provide information on oral sensory mechanisms useful for dental students, oral biologists, and dental clinicians. As the editor, I would like to express my sincere appreciation to the authors of each chapter for their distinguished contributions. I also hope that this Frontiers of Orl Physiology series from Karger will contribute significantly to the worldwide development of research in oral physiology.

December 1982 Yojiro Kawamura, MD, DMSs