Advances in Hepatic Encephalopathy and Urea Cycle Diseases

5th International Symposium on Ammonia
Semmering, Austria, May 16-19, 1984

Advances in Hepatic Encephalopathy and Urea Cycle Diseases

Editors:
G. Kleinberger, P. Ferenci, P. Riederer, H. Thaler, Vienna

234 figures, 167 tables, 1984

S. Karger · Basel · München · Paris · London · New York · Tokyo · Sydney

KARGER

National Library of Medicine, Cataloging in Publication
International Symposium on Ammonia (5th : 1984 :Semmering, Austria)
Advances in hepatic encephalopathy and urea cycle diseases /
5th International Symposium on Ammonia.
Semmering, Austria, May 16-19, 1984; editors. G. Rheinberger ... [et al.].
1. Ammonia-metabolism-congresses
2. Hepatic encephalopathy-metabolism-congresses
3. Hepatic encephalopathy
ISBN 3-8055-3995-9
W3 IN916AB 5th 1984a
[W] 700 1637 1984a

Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
I. Opening Lecture

Szám, I.: Past and Future of the Ammonia Symposia 1

II. Panel Discussion: "Future Clinical Trials in the Treatment of Acute Hepatic Encephalopathy"

Tygstrup, N.; Vxlstrup H.: Effect of Branched Chain Amino Acids on the Outcome of Hepatic Encephalopathy 11
Morgan, M. Y.: Selection of Patients for Future Trials of Branched Chain Amino Acids (BCAA) in the Treatment of Acute Hepatic Encephalopathy in Patients with Chronic Liver Disease 15
Capocaccia, L.: Considerations of Standard Treatment of Hepatic Encephalopathy in Future Clinical Trials 20
Fischer, J. E.: Treatment of Hepatic Encephalopathy with Branched Chain Amino Acids 27
Wahren, J.: Pitfalls in the Evaluation of Therapeutic Effects in Patients with Hepatic Encephalopathy 41

Discussion (Chairman: N. Tygstrup) 46

III. Significance of Different Animal Models for the Study of Liver Insufficiency

Schafer, D. F.: Toxin Models of Acute Liver Failure 57
Herlin, P.; Holmin, T.: Surgical Models of Acute Liver Failure 62
Holmin, T.; Herlin, P.: Experimental Portacaval Shunts 72
Suarez, 1; Asensio, L.; Urquijo, H; Hernandez, E.; Rodelgo,M.; Garcia-Sancho, L.:
Chronic Hepatic Insufficiency after Portacaval and Mesocaval Shunt in the Rat: A Comparative Study 77
Proctor, E.; Chatamra, K.: Experimental Cirrhosis 85
Zeneroli, M. L.; Baraldi, M.; Pinelli, G.; Grandi, S.; Vezzelli, C; Contrucci, L.; Penne, ;
Ventura, .: Assessment of Hepatic Encephalopathy in Experimental Animals 94

Contents VI

IV. Physiology and Pathophysiology of Ammonia Metabolism

Häussinger, D.; Gerok, W: New Concepts in Hepatic Ammonia Metabolism and pH Regulation 113
Kovaevic, Z.; Bajin, K.; Brljda, O.; Samardijjevi, D.: Regulation of Liver Oxidation of Glutamine by Ammonia and pH 132
Vilstrup, H: Urea Synthesis in Humans — Preconditions of Quantitation and Relation to Liver Function 141
van Leeuwen, P. A. M.; Janssen, . ; de Boer, J. E. G.; Goossens, H. M.; Soeters, P. B.: The Effect of Lactulose and Neomycin on Metabolic Ammonia Generation in Small and Large Bowel in Vitro in Male Wistar Rats 163
Imler, M.; Warier, J. M.; Chabrier, G.; Marescaux, C; Frick, .. Hyperammonemia of Renal Origin: New Aspects 169
Doffoël, M.; Brandt, C M.;Arbogast, R.;Schreiber, C; Bockel, R.; Fincker, J. L: Renal Origin of Hyperammonemia Induced by Propranolol in Liver Cirrhosis 178
Eriksson, L. S.; Bjórkman, O.; Broberg, S.; Wahren, J.: Inter-Organ Flux of Ammonia during Physical Exercise 180
V. Urea Cycle Diseases and Hyperammonemic Encephalopathy

Batshaw, M. L: Long-Term Treatment of Inborn Errors of Urea Synthesis 187
Bachmann, G: Pathogenetic Mechanisms in Congenital Hyperammonemic Disorders 196
Vlaho. M.; Harsanyi, P.; Vogl, P.; Kaszian, L: The Influence of Acute and Chronic Renal Failure on the Enzymes of the Urea Cycle and the Protein Content in Leucocytes and Liver in Human and Animal Models 206
Petersen, K. F.; Vilstrup, H.: Dose-Dependent Inhibition by Salicylic Acid of Alanine Uptake and Urea Synthesis in Perfused Rat Livers 213
Hansen, . ; Vilstrup, H.: Kinetics of Urea Synthesis during Infusion of Valine in Intact Rats 219
Maier, K. P.; Gerok, W.: Hyperammonemia and Hepatic Encephalopathy 224

VT. Blood Brain Barrier Permeability

Schaer, D. F: The Blood-Brain Barrier in Acute Liver Failure 232
Ede, R. J.; Zaki, A. E. O.; Silk, D. . ; Williams, R.: Experimental Studies of Blood-Brain Barrier Permeability in Chronic Hepatic Encephalopathy 244

Contents VII

Huet, P. M.; Rocheleau, B.; Pomier-Layrargues, G.; Willems, .: Blood Brain Barrier in Dogs with and without Hepatic Encephalopathy 261
Rigotti, P.; James, J. H.; Riggio, O.; Fischer, J. E.: Changes in the Kinetics of Leucine Transport across the Blood-Brain Barrier after Portacaval Shunt 272
Strom, R.; Cardelli-Cangiano, P.; Fiori.A.; Ceci, F.; Rossi-Fanelli, F.; Cangiano, C: Ammonia, Methy1mercaptan, and Blood-Brain Transport of Amino Acids . 273
Jonung, T.; James, J. H.; Rigotti, P.; Fischer, J. E.: The Effect of Ammonia Infusion on the Kinetics of Transport of Phenylalanine and Leucine into the Brain with and without Pretreatment of Methionine Sulfoximine (Abstract) 290
Jonung, T.; Rigotti, P.; James, J. H.; Fischer, J. E.: Inhibiting Glutamine Synthesis in Portacaval-shunted Rats Prevents the Accumulation of Neutral Amino Acids in Brain 292
Grippon, P.; Le Poncin-Laffitte, M; Faure, G.; Wang, S. R.; Boschat, M.; Opolon, P.: Role of Ammonia in the Intracerebral Transfer and Metabolism of Tryptophan 293
Opolon, P.: Significance of Middle Molecules in the Pathogenesis of Hepatic Encephalopathy 310
Gove, C. D.; Ede, R. J; Williams, R.: In Vivo Reduction of Na+, K+-ATPase Activity in Rat Brain during D-Galactosamine-Induced Acute Hepatic Failure: A Possible Cause of Encephalopathy 314
Gove, C. D.; Hughes, R. D.; Seda, H; Williams, R.: Inhibition of Rat Brain Na+, K+-ATPase by Serum from Patients with Fulminant Hepatic Failure and the Removal of Inhibitors by Haemoperfusion 319
Brunner, G.; Windus, G.; Schmidt, F. W.: Intracranial Pressure and Brain Edema in Experimental Hyperammonemia 325
Pappas, S. C; Ferenci, P.; Jones, . .: Hepatic Encephalopathy: A Disorder of Synaptic Plasma Membrane Composition and Fluidity? 331
VII. Neurotransmission
Jones, . .; Schafer, D. F.; Ferenci, P.; Pappas, S. C: Changes in the Status of Brain Receptors for Neurotransmitters in a Rabbit Model of Hepatic Coma: Their Potential Significance 337
Zanchin, G.; Maggioni, F.; Salassa, D.; Vassanelli P.: GABA and Dopamine Receptors after Chronic Porta-Caval Shunt in the Rat 360
Ferenci, P.; Pappas, S. C; Jones, . .: Neurotransmitter Receptor Changes in Experimental Hyperammonemia in the Rabbit 368
Moroni, F.; Carla', V; Lombardi, G.; Pellegrini, D.; Carassale, G. L.; Cortesini, C: Excitatory Amino Acids, Tryptophan Metabolites, and Endogenous Neurotoxins in Porta-Caval Shunted Rats 385
Butterworth, R. F; Giguère, J.-F: Region-Selective Glutamine Changes in the CNS in Relation to Function in Experimental Subacute Hepatic Encephalopathy 394

Contents VIII
Salerno, F.; Malesci, ;; Bonato, C; Rosati, R.; Panerai, A. E.: Brain Cholecystokinin and Beta-Endorphin Immunoreactivity in Rats with Different Experimental Models of Liver Failure 402
Meryn, S.; Ferenci, P.; Pappas, S.: Big and Small Immunoreactive Brain Cholecystokinin in Experimental Hepatic Encephalopathy in the Rabbit 411
Jeppsson, B.; Bengtsson, F; Nobin, ;; Fyge,K.: Effects of Propranolol on Brain Serotonin Metabolism after Portacaval Shunt in Rats 417
Szpakowicz, T.; Boron, P.: Blood Serotonin and its Metabolites in Relation to Liver...
and Brain Serotonin from Autopsy Material of Patients with Hepatic Encephalopathy and Hepatic Coma 425

VIII. Clinical Aspects of Hepatic Encephalopathy

Martines, D.; Martini, .; Battaglia, G.; Gerunda,G.; Comacchio, F.; Vespasiani, F.; Gastaldon, .: Brain-Stem Auditory-Evoked Responses (Baers) in the Clinical Evaluation of Hepatic Encephalopathy (. E.) 430

Matos,L.; Camilo,M.E; Pinto CorreiaJ.; Alves,C; Garcia,C; .; Marques,.;

Gonçalves, M.: Subclinical Portal-Systemic Encephalopathy 442

Delia Sala, S.; Nespoli, .; Ronchetti, .; Spinnler, .; Does Chronic Liver Failure Lead to Chronic Mental Impairment? 448

IX. Non-Hepatic Metabolic Encephalopathy

Hamster, W.; Schomerus, H: What is the Role of Alcohol in the Expression of Cerebral Functional Defects of Latent Porta-Systemic Encephalopathy? 457

Kreuesser, W.;Ritz, : Phosphate Depletion Syndrome 463

Freund, HR.; Muggia-Sullam, M.; Melamed, .; LaFrance, R; Holroy de, J.; Fischer, J. E.: Septic Encephalopathy 473

Deferrari, G.; Garibotto, G.; Robaudo, G; Canepa,A.; Passerene, G. C; Tizianello, .:

Brain Metabolism in Uremia 484

Cangiano, G; Cascino, .; Carlone, S.; Muscaritoli, M.; Cardelli, S.; Serra, P.; Strom, R.; Rossi-Fanelli, F: Brain Dysfunction in Respiratory Failure 499

X. Amino Acid Metabolism

Riggio, O.; James, J. H; Peters, J. G; Fischer, J. E: Influence of Ammonia on Leucine Utilization in Muscle and Adipose Tissue in Vitro 519

Zoli, M.; Bianchi, G. P.; Marzocchi, .; Marrozzini, C; Capelli, M.; Mattioli, L; Chec-chia, G.A.; Cassarani, S.; Dondi, C; Marchesini, G.: Splanchnic, Peripheral, and Renal Exchange of Amino Acids in Cirrhotic Patients with Portal Hypertension 538

Amadio, P.; Merker, C; Nosadini, R.; Zuin, R.; Gatta.A.: Amino Acid, Glucose, and
Free Fatty Acid Metabolism in the Lower Limb in Cirrhotics. An Approach to the Problem of Plasma Amino Acid Imbalance in Liver Cirrhosis 545

Contents IX

Leweling, H; Holm, .; Staedt, U.; Striebel, J.-P.; Tschepe, .: Intra- and Extracellular Amino Acid Concentrations in Ammonium-Infused Rats. Evidence that Hyperammonemia Reduces BCAA Levels (Abstract) 552

de Boer, J. E. G.; Goossens, H. M.; van Dongen, J.J.; van Eyck, H. M. H; Janssen, .; van Leeuwen, P. .; Soeters, P. .: Activity of Branched-Chain Oxo-Acid Dehydrogenase (BCOA-DH) in Adipose Tissue and Diaphragm of Rats: The Influence of Portacaval Shunt (PCS) 555

Häussinger, D.; Gerok, W.: Branched-Chain Keto Acids and Hepatic Ammonia Metabolism: Regulation by Release of Glutamate from the Liver 563

Kleinberger, G.; Riederer, P.: Metabolic and Clinical Effects of Complete Parenteral Nutrition Supplemented by L-Valine in Hepatic Coma572

Tangerman, .; Boers, G. H. J.: Methanethiol Metabolism after Oral Methionine Administration 594

Ukikusa, M.; Jung, V.; Kachel, F.; Nakajima, Y; Niehaus, K. J.; Uhlhaas, S.; Olek, K.; Lie, T. S.: Amino Acid Metabolism in Acute Hepatic Failure and its Treatment by Hemoperfusion 603

XI. Hormones and Non-Protein-Metabolism

Grün, M.; Wernze, H.; Goerig, M.; Burghardt, W.; Peter, G.; Müller, G.: Imbalances of Amino Acid Metabolism in the Portacaval Shunted Rat: Relationship to Activation of the Sympathoadrenal System and Enhanced Urinary Prostaglandin Excretion 625

Marchesini, G.; Bianchi, G. P.; Cassarani, S.; Dondi, C; Zoli, M.: Relationship of Carbohydrate and Amino Acid Metabolism in Patients with Liver Cirrhosis . . 634

Holm, E.; Tschepe, .; Staedt, U.; Leweling, H; Gladisch, R.; Bäßler, . : Fatty Acid and Ketone Body Metabolism in Hepatic Failure 645
XII. New Aspects of Nutrition in Liver Diseases

Lambert, D.; Wright, P. D.: The Effects of Liver Disease on Hepatic Energy Charge in Humans 667
Bosari, S.; Marradi, C.; Chiara, O.; Bevilacqua, G.; Nespoli, .: Energy Expenditure in Cirrhotic Patients 674
Holdsworth, J. D.; Dionigi, P.; James, O. F. W.; Wright, P. D.: Correction of Plasma Amino Acid Abnormality in Cirrhosis by Infusion of Amino Acid Solutions of Varying Branched-Chain Amino Acid Content 682
Grüngreiff, .; Kleine, F.-D.; Lössner, .: Effect of Therapy upon the Behaviour of Amino Acids in Plasma in Chronic Liver Diseases 691
Dioguardi, F. S.; Abbiati, R.; Incerti, P.; Brigatti, M.; Dell'Oca, M.: Reduction of the Myofibrillar Protein Breakdown Rate in Cirrhotic Patients by Long-Term Oral Administration of a Branched-Chain Amino Acid Mixture 700

Contents

Langley, P. G.; Gove, C. D.; Williams, R.: Altered Plasma and Platelet Lipids and Their Effect on Platelet Function in Fulminant Hepatic Failure 706
Astre, C; Campos, A. C; Gouttebel, M. C; Saint-Aubert, B.; Joyeux, H.: Hepatic Uptake and Release of Amino Acids during Liver Regeneration after 65% Hepatectomy in the Dog 711
Campos, A. C; Vic, P.; Crastes de Paulet, P.; Astre, C; Liu, Y. Y.; Saint Aubert, B.; Parfait, D.; Crastes de Paulet, .; Joyeux, H.: Beneficial Effect of Lipid Infusion during Liver Regeneration after 65% Hepatectomy in the Dog 720
Camilo, M. E.; Paiva Carvalho, M. G.; Tavares, L; Rodrigues, M. O.; Marques, .; Ta-vares, .; Matos, L; Halpern, M. J.; Pinto Correia, J.: Total Parenteral Nutrition with Intralipid in Patients with Chronic Liver Disease after Gastrointestinal Bleeding 725

XIII. Special Aspects of Patients with Liver Disease

Hörtnagl, K; Singer, . .; Lenz, K.; Kleinberger, G.; Lochs, H.: Involvement of Substance in the Pathogenesis of Cardiovascular Complications in Hepatic Failure 731
Bigatello, L. M.; Fattori, L; De Paoli, M.; Bevilacqua, G.; Nespoli, .: Quantitative Endotoxin Determination in Comatose Cirrhotic Patients 740

Subject Index 757

Preface
This volume contains the papers presented at the 5th International Symposium on Ammonia, held in Semmering, Austria, May 16-19, 1984 and covers a wide spectrum of research activities conducted to uncover the mystery of hepatic encephalopathy. The contributions include various topics such as metabolism, endocrinology, neuro chemistry, electrophysiology, nutrition etc., reflecting the enormous increase in knowledge of many aspects of liver failure.

The possible metabolic derangements in liver failure are not a simple consequence of the breakdown of several functions of the liver but of a series of interactions of almost any organ in the body. Against this background it was not surprising that many different hypotheses of the pathogenesis of hepatic encephalopathy have been promoted and that still the right solution is lacking. This development in research was evident when Dr. I. Szam (Budapest, Hungary) the president of the 1st International Symposium on Ammonia, reviewed the past symposia and their highlights.

The position of ammonia as "frontrunner" and candidate toxin for the mediation of hepatic encephalopathy was strengthened in this symposium. Important interactions between ammonia and the metabolism of branched chain amino acids (BCAA), the permeability of the blood brain barrier and the altered neurotransmission in hepatic encephalopathy have been presented and hence, ammonia could serve as an important link to other hypotheses. The liver plays an even more complex role in ammonia metabolism then recognized before. The landmark work to this topic by Dr. D. Häussinger (Freiburg, FRG) on "New Concepts in Hepatic Ammonia Metabolism and pH Regulation" was awarded with the Friedrich Wewalka Award 1984.

Therapeutic strategies to lower blood ammonia concentration in urea cycle diseases have been considerably improved and may also provide a new approach to the treatment of hepatic encephalopathy. The "false neurotransmitter" hypothesis of the pathogenesis of hepatic encephalopathy by Fischer and Baldessarini lead to trials to treat hepatic encephalopathy with BCAA alone or with BCAA enriched amino acid solutions. After a period of great enthusiasm about the possible therapeutic values on intravenous BCAA, first controlled studies have tempered our hopes.

Therefore, these proceedings start with the panel about the "Future Clinical Trials in Treatment of Acute Hepatic Encephalopathy" which was excellently chaired and edited by Dr. N. Tygstrup from Copenhagen. Undoubtedly the
highly qualified panelists and the competent discussants in the auditorium made this panel to one of the most exciting events of the symposium. The new concepts of receptor mediated changes as causal pathogenic factor of HE included not only the "classical" neurotransmitters serotonin, dopamine and noradrenaline but also an altered amino acidergic neurotransmission was presented, stressing the role of the major inhibitory neurotransmitter of the mammalian brain, gamma-aminobutyric-acid (GABA), in the pathogenesis of hepatic encephalopathy. In addition the possible role of alterations of the blood brain barrier in liver failure was discussed in detail by well recognized experts in this field. However, it became clear that the different animal models used to study the effects of liver failure and the different methods used to detect and to quantitate possible changes yielded different and even contradictory results. Future studies of brain function in hepatic encephalopathy may clarify many issues and new facilities may result in a better understanding of events mediating hepatic encephalopathy. We like to express our gratitude to all participants of the symposium for contributing their efforts and for their cooperation. Our special thanks are due to Mrs. Reingard Kleinberger for her secretarial work and to Karger, Munich, especially H. Rupprecht and W. Kunz for providing the rapid publication of this volume. Furthermore we are extremly thankful to the numerous sponsors of this conference, without which we not have had the possibility to organize and publish this conference for the scientific community.

Vienna, October 1984

Gunter Kleinberger
Peter Ferenczi
Peter Riederer
Heribert Thaler