Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All rights reserved.
No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Copyright 1985 by S. Karger AG, P.O. Box, CH-4009 Basel (Switzerland)
Printed in Switzerland by Thr AG Offsetdruck, Pratteln
ISBN 3-8055-4059-0

Contents

Preface VII
Immunobiology of the Materno-Fetal Interaction
Lala, P.K.; Kearns, M. (London, Ont.): Immunobiology of the Decidual Tissue 1
Wegmann, T.G. (Edmonton, Alta.): Self-Sterility, MHC Polymorphism, and Spontaneous Abortion 16
Tider, V.; Blank, M.; Nebel, L. (Tel Aviv): Cytotoxic T Lymphocytes, Interleukin-2 and Trophoblast Involvement 23
Clark, D.A.; Slapsys, R.M. (Hamilton, Ont.): Immunoregulatory Mechanisms in the Uterus and Survival of the Fetus 44
Chaouat, G.; Kolb, J.P.; Rivire, M. (Paris); Chaffaux, S. (Maisons-Alfort): Local and Systemic Regulation of Maternal Antifetal Cytotoxicity during Mu ne Pregnancy 54
Globersin, A. (Rehovot): Development of Immunosuppressor Cells in the Mouse Embryo 66

Common Mechanisms in Pregnancy and Malignancy
Ran, M.; Witz, I.P. (Tel Aviv): FcR Derived from Without the Immune System - A Potential Escape Mechanism for Cells Propagating in a Hostile Immunological Environment 83

Contents VI

Immune Problems in Human Reproduction

Beer, A.E. (Ann Arbor, Mich.): Survival and Rejection of the Fetal Allograft 114
McIntyre, J.A.; McConnachie, P.R.; Faulk, W.P. (Springfield, Ill.): Characterization of Maternal Antipaternal Antibodies in Secondary Aborting Women 131
Bernstein, LL.; Gallagher, J.S.; Friedman, S.A.; Marcus, Z.H. (Cincinnati, Ohio): Standardized Immunotherapy Protocol for IgE-Mediated Anaphylaxis to Human Seminal Plasma 151
Nebel, L.; Rudak, E.; Mashiach, S.; Dor, J.; Goldman, B. (Tel-Hashomer): Malimplantation Caused by Trophoblastic Insuficiency Resulting in Failure of Gestation following in vitro Fertilization-Embryo Transfer 170

Immune Aspects of Genital Tumors

Barber, H.R.K.; Dorsett, B. (New York, ..): Ovarian Cancer: Immunologic Diagnosis and Therapy 176
Ablin, R.J.; Gonder, M.J. (Stony Brook, N.Y.): Immunological Aspects of Benign and Malignant Tumors of the Prostate 185
Ben-Efraim, S. (Tel Aviv): Immunomodulation of Antitumor Response by Chemotherapy 199

Subject Index 207

Preface

The present decade has witnessed the rapid growth of some interrelated basic and clinical studies we now know as the immunobiology of reproduction. Directly or indirectly, immunology has how intruded or has been shown to underlie nearly every aspect of mammalian reproduction. Some
very recent important developments in basic immunology and immunogenetics that have allowed us to look at immunoreactivity in precise ways in individuals experiencing both normal and abnormal pregnancies. The important areas are: (1) molecular and genetic approaches to immunological systems; (2) the cloning of immunocompetent cells; (3) hybridoma technology to produce monoclonal antibodies and the application of monoclonal reagents to biology and medicine; (4) the antigens of the major histocompatibility complex and their biological functions; (5) regulatory mechanisms of immune responses by idiotypes and anti-idiotypes; (6) the functions of mediators including interleukin-1, interleukin-2 and others; (7) the roles that hormones exert on immune responses, gene expression, and oncogenic regulation [1]. In addition, these advances in immunogenetics have allowed a definition of the critical features of the trophoblast of the fetal/placental unit of all species that initiate and establish its immunoprotection in the mother. These are: (1) in the maternal uterus, unlike in extra-uterine sites, the trophoblast is resistant to immune damage by cytotoxic lymphocytes, antibody, and antigen/antibody complexes [2]; (2) it forms a physical barrier to most immune effectors except IgG from reaching the fetus [3, 4] while at the same time functioning as a dialysis membrane conducting two-way nutritive and respiratory functions between the mother and her fetus; (3) it signals and/or recruits the migration of lymphoid cells into the uterine decidua and the uterine lymphatics that have suppressed activity or are functionally hyporesponsive to paternal antigens [5]; (4) it produces progesterone and other hormones in local concentrations far greater than measured systemically. These hormones have immunoregulatory functions in blocking the efferent limb of the immunological reflex arc as well as regulating gene expression of tissues at the maternal/fetal interface [6-8]; (5) the fetal placental unit from implantation onward promotes and sustains in the mother the production of blocking factors (antibodies) that are present in the maternal serum and bind on an antigen-specific basis to the placental trophoblast. These blocking factors can be eluted from the placenta and can block mixed lymphocyte culture reactions between mother/father/child. These blocking factors do not cross the placenta nor appear in the cord sera of the infant [3].

There is a growing body of data from experiments on inbred strains of animals that reproduce unsuccessfully as well as in vivo and in vitro studies in humans experiencing repeated pregnancy wastage indicating that the critical features of the trophoblast for immune protection in the mother are not seen, fail to become established, or deviate along cytotoxic lines. In addition, we can no longer talk of the `riddle of the fetal allograft' [9] and expect
that a single mechanism underlies the immunological coexistence between mother and child. Likewise, it is no longer debated that the above-mentioned features have evolved in humans to ensure successful viva parity and genetic polymorphisms [10].

The manuscripts presented in Contributions to Gynecology and Obstetrics, volume 14, presented and discussed at the International Symposium on Immunology of Reproduction in Tel Aviv, October 21-25, 1984, are by leading investigators in the area of the immunobiology of the maternal/fetal reaction and address these critical features of the trophoblast for immune protection in the mother just described. The scientific field of reproductive immunology has certainly come of age and workers in this area are rapidly answering some of the most basic outstanding questions in reproductive biology.

Alan E. Beer, MD
Vladimir Toder, MD

References


Preface IX

Immunology and Immunopathology of Reproduction
Contributions to Gynecology and Obstetrics
Vol. 14
Series Editor
P.J. Keller, Zurich

Based on the Materials of the International Symposium on Immunology of Reproduction, Tel-Aviv, October 21-25, 1984

Immunology and Immunopathology of Reproduction
Volume Editors
V. Tider, Tel-Aviv
11 figures and 46 tables, 1985

Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the
constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All rights reserved.

No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

Copyright 1985 by S. Karger AG, P.O. Box, CH-4009 Basel (Switzerland)

Printed in Switzerland by Thr AG Offsetdruck, Pratteln

ISBN 3-8055-4059-0

Contents

Preface VII

Immunobiology of the Materno-Fetal Interaction

La/a, P.K.; Kearns, M. (London, Ont.): Immunobiology of the Decidual Tissue 1

Wegmann, T.G. (Edmonton, Alta.): Self-Sterility, MHC Polymorphism, and Spontaneous Abortion 16

Tider, V.; Blank, M.; Nebel, L. (Tel Aviv): Cytotoxic T Lymphocytes, Interleukin-2 and Trophoblast Involvement 23


Clark, D.A.; Slapsys, R.M. (Hamilton, Ont.): Immunoregulatory Mechanisms in the Uterus and Survival of the Fetus 44

Chauvat, G.; Kolb, J.P.; Rire, M. (Paris); Chaffaux, S. (Maisons-Alfort): Local and Systemic Regulation of Maternal Antifetal Cytotoxicity during Mune Pregnancy 54

Globersin, A. (Rehovot): Development of Immunosuppressor Cells in the Mouse Embryo 66

Common Mechanisms in Pregnancy and Malignancy


Ran, M.; Witz, I.P. (Tel Aviv): FcR Derived from Without the Immune System - A Potential Escape Mechanism for Cells Propagating in a Hostile Immunological Environment 83


Contents VI

Immune Problems in Human Reproduction
The present decade has witnessed the rapid growth of some interrelated basic and clinical studies we now know as the immunobiology of reproduction. Directly or indirectly, immunology has how intruded or has been shown to underlie nearly every aspect of mammalian reproduction. Some very recent important developments in basic immunology and immunogenetics that have allowed us to look at immunoreactivity in precise ways in individuals experiencing both normal and abnormal pregnancies. The important areas are: (1) molecular and genetic approaches to immunological systems; (2) the cloning of immunocompetent cells; (3) hybridoma technology to produce monoclonal antibodies and the application of monoclonal reagents to biology and medicine; (4) the antigens of the major histocompatibility complex and their biological functions; (5) regulatory mechanisms of immune responses by idiotypes and anti-idiotypes; (6) the functions of mediators including interleukin-1, interleukin-2 and others; (7) the roles that hormones exert on immune responses, gene expression, and oncogenic regulation [1]. In addition, these advances in immunogenetics have allowed a definition of the critical features of the trophoblast of the fetal/placental unit of all species that initiate and establish its immunoprotection in the mother. These are: (1) in the maternal uterus, unlike in extrauterine sites, the trophoblast is resistant to immune damage by cytotoxic lymphocytes, antibody, and antigen/antibody complexes [2]; (2) it forms a
physical barrier to most immune effectors except IgG from reaching the fetus [3, 4] while at the same time functioning as a dialysis membrane conducting two-way nutritive and respiratory functions between the mother and her fetus; (3) it signals and/or recruits the migration of lymphoid cells into the uterine decidua and the uterine lymphatics that have suppressed activity or are functionally hyporesponsive to paternal antigens [5]; (4) it produces progesterone and other hormones in local concentrations far greater than measured systemically. These hormones have immunoregulatory functions in blocking the efferent limb of the immunological reflex arc as well as regulating gene expression of tissues at the maternal/fetal interface [6-8]; (5) the fetal placental unit from implantation onward promotes and sustains in the mother the production of blocking factors (antibodies) that are present in the maternal serum and bind on an antigen-specific basis to the placental trophoblast. These blocking factors can be eluted from the placenta and can block mixed lymphocyte culture reactions between mother/father/child. These blocking factors do not cross the placenta nor appear in the cord sera of the infant [3].

There is a growing body of data from experiments on inbred strains of animals that reproduce unsuccessfully as well as in vivo and in vitro studies in humans experiencing repeated pregnancy wastage indicating that the critical features of the trophoblast for immune protection in the mother are not seen, fail to become established, or deviate along cytotoxic lines. In addition, we can no longer talk of the `riddle of the fetal allograft' [9] and expect that a single mechanism underlies the immunological coexistence between mother and child. Likewise, it is no longer debated that the above-mentioned features have evolved in humans to ensure successful viva parity and genetic polymorphisms [10].

The manuscripts presented in Contributions to Gynecology and Obstetrics, volume 14, presented and discussed at the International Symposium on Immunology of Reproduction in Tel Aviv, October 21-25, 1984, are by leading investigators in the area of the immunobiology of the maternal/fetal reaction and address these critical features of the trophoblast for immune protection in the mother just described. The scientific field of reproductive immunology has certainly come of age and workers in this area are rapidly answering some of the most basic outstanding questions in reproductive biology.

Alan E. Beer, MD
Vladimir Tider, MD

References

Preface I


