Congress for Microcirculation (3rd: 1984 Oxford, Oxfordshire) IV Series: Progress in applied microcirculation; vol 9
ISBN 3-8055-4070-1
WI PR666FI v.9
QS 532.5.E7 E565 1984

All rights reserved.

No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

Copyright 1985 by S. Karger AG, P.O Box, CH-4009 Basel (Switzerland)
Printed in Germany by Muhlberger GmbH, D-8900 Augsburg
ISBN 3-8055-4070-1

Contents

Preface VI
List of Contributors and Invited Discussants VIII
Wagner, R. C. (Newark, Del.): Application of High Voltage Electron Microscopy (HVEM) to Visualize the Three-Dimensional Structure of the Vesicular System in Thick Sections ... 1
Casley-Smith, J. R. (Adelaide): Vesicular Form and Fusion - As Revealed by Freeze-Immobilization and Stereoscopy of Semi-thin Sections: Implications for Permeation via these Structures ... 6
Frøyær-Jensen, J. (Copenhagen): The Vesicle Controversy 21
Discussion of the Presentations: Wagner, Casley-Smith, Frøyær-Jensen 43
Clough, G.; Michel, C. C. (London): Quantitative Transport of Macromolecules by Endothelial Cell Vesicles ... 51
Schneeberger, E. E. (Boston, Mass.): Vesicular Transport across Pulmonary Capillary Endothelium in the Fluorocarbon Exchange Transfused Rat 59
DeFouw, D. O. (Newark, N. J.): Morphometric Studies of Endothelial Vesicles of Alveolar Vessels in Edematous Lungs ... 67
Discussion of the Presentations: Clough, Schneeberger, DeFouw 80
Taylor, A. E.; Korthuis, R. J.; Townsley, M. I. (Mobile, Ala.): Use of Lymphatic Protein Fluxes to Assess Vascular Endothelial Selectivity to Macromolecules 100
With the very beginning of the enormous impact of electron microscopy on cell biology, vesicles of ca. 500–700 Å in outer diameter were recognized as a regular component of a variety of endothelial cells. In his famous and frequently, yet in most cases erroneously cited short report on these structures (the correct title of the journal is: J. appl. Physics and not J. appl. Physiol.), Dr. Palade assumed even at that time (1953) that the vesicles may represent a system for transporting fluids across the capillary wall and may account for the high permeability rate of the capillaries; by means of a vesicular shuttle. This suggestion established the ferry boat theory of vesicular transport. At the beginning, most physiologists rejected this new kind of a transport mechanism on the grounds of quantitative considerations, until electron dense tracers with a wide spectrum of molecular weights became increasingly available which definitely established vesicular transport as a biologically significant means for the normal transendothelial movement of plasma proteins. In addition, the vesicles appeared to be the most likely candidate for the so-called large pores introduced by Pappenheimer into the permeability discussion. Although several laboratories published experimental evidence indicating that a vesicular shuttle cannot be the correlate of the large pores; the majority favored vesicular transport as a realistic mechanism to explain the normally occurring transcapillary transport of high molecular substances, particularly of plasma proteins.

This long held assumption became substantially questioned, because the analysis of ultrathin serial sections resulted in a new three-dimensional model of vesicular organization. According to this all vesicles are gathered into small intercommunicating clusters of racemose configuration which either open to the luminal or to the abluminal surface, but never simultaneously to both. So called
"free" vesicles are absent. The immediate opposite of this is a hypothesis named "transcytosis". This designates an active, continuous process of vesicle fusion by which either transendothelial channels or fenestrae are formed. Since the majority of both structures is equipped with size-limiting structures, such as delicate diaphragms and localized strictures, fenestrae and channels are assumed to be the structural correlates of the "small pores", whereas the few truly "open" channels and fenestrae (without diaphragms) represent the "large pores".

To evaluate the present state of the art, we have gathered experts from different laboratories from all over the world who employ different experimental models and techniques to achieve a better understanding of the structure-function interrelationship of capillary endothelial cell vesicles.

Munich/Linköping, September 1985
F. Hammersen
D. H. Lewis
List of Contributors and Invited Discussants
J. F. BERNAUDIN
Université Paris Val de Marne
Faculté de Médecine de Créteil
Département d’Enseignement et de Recherche d’Histologie et Embryologie
8, rue de Général Sarrail
F-94010 Créteil Cedex (France)

J. R. CASLEY-SMITH
Microcirculation Research Unit
University of Adelaide
Box 498 G. P.O.
Adelaide
South Australia 5001 (Australia)

G. CLOUGH
Department of Physiology and Biophysics
St. Mary’s Hospital Medical School
London (England)

D. O. DEFOUW
Department of Anatomy
J. FRØKJÆR-JENSEN
Laboratory of Neurobiology
The Marine Biological Laboratory
Woods Hole, MA 02543 (USA)

F. HAMMERSEN
Department of Anatomy
Technical University Munich
Biedersteiner Str. 29
D-8000 Munich (FRG)

D.H. LEWIS
Linköping University
Clinical Research Center
S-581 85 Linköping (Sweden)

C. C. C. O’MORCHOE
Department of Anatomy and Pathology
University of Illinois
College of Medicine
at Urbana-Champaign
190 Medical Sciences Buildings
506 South Mathews
Urbana, IL 61801 (USA)

G. G. PIETRA
Anatomic Pathology Division
Hospital of the University
of Pennsylvania
34th and Spruce Streets
Philadelphia, PA 19104 (USA)

U. S. RYAN
Department of Medicine D-58
University of Miami
School of Medicine
P. O. Box 016960
Miami, FL 33101 (USA)
List of Contributors and Invited Discussants IX

E. E. SCHNEEBERGER
Department of Pathology
Massachusetts General Hospital
Harvard Medical School
Boston, MA 02114 (USA)

ST. M. SHEA
Department of Pathology
UMDNJ-Rutgers Medical School
Piscataway, NJ 08854 (USA)

A.E. TAYLOR
Department of Physiology
College of Medicine
University of South Alabama
Mobile, AL 36688 (USA)

R. C. TRIPATHI
Eye Research Laboratories
The University of Chicago
939 East 57th Street
Chicago, IL 60637 (USA)

R. C. WAGNER
School of Life and Health Sciences
University of Delaware
Newark, DE 19716 (USA)

S. K. WILLIAMS
Department of Physiology
Jefferson Medical College
Thomas-Jefferson-University
Philadelphia, PA 19140 (USA)