References

7 American Society of Cytology, Educational Film Committee: The Papanicolaou stain: principles (film and text), National Committee for Careers in the Medical Laboratory, and The American Cancer Society (Wexler Films, Los Angeles 1974).
8 American Society of Cytology, Educational Film Committee: The Papanicolaou stain: methods (film and text), National Committee for Careers in the Medical Laboratory, and The American Cancer Society (Wexler Films, Los Angeles 1975).
9 American Society of Cytology, Educational Film Committee: Cytopreparation with microslides (film and text), National Committee for Careers in the Medical Laboratory, and The American Cancer Society (Wexler Films, Los Angeles 1975).
10 American Society of Cytology, Educational Film Committee: Cytopreparation with membrane filters (film and text), National Committee for Careers in the Medical Laboratory, and The American Cancer Society (Wexler Films, Los Angeles 1975).
14 American Society of Cytology, Educational Film Committee: Coverslipping in diagnostic cytology (film and text), Health and Education Resources, and The American Cancer Society (Wexler Films, Los Angeles 1979).


16 ANDREW, W.: Cellular changes with age (Thomas, Springfield, Ill. 1952).


30 BARR, M. L. and BERTRAM, E. G.: A morphological distinction between neurones of the male and female, and the behavior of the nucleolar satellite during accelerated
32 BARTELS, P. H., LAYTON, J. and SHOEMAKER, R. L.: Digital microscopy, in The Cell in Health and Disease 290


References 291

60 COWDRY, E. V.: Cancer cells (Saunders, Philadelphia 1955).
64 DARZYNKJEWICZ, Z.: Acridine orange as a molecular probe in studies of nucleic acids in situ, in M. R. MELAMED, P. F. MULLANEY and M. L. MENDELSON,


The Cell in Health and Disease 292


References 293


100 FROST, J. K.: Manual for the twenty-seventh postgraduate institute for pathologists in clinical cytopathology (The Johns Hopkins University School of Medicine and The Johns Hopkins Hospital, Baltimore 1986).


The Cell in Health and Disease 294

124 GILL, G. W. and PLOWDEN, K. M: Laboratory cytopathology techniques for specimen preparation, 7th ed., in J. K. FROST, Manual for the twenty-seventh postgraduate...
References 295

and histopathologic aspects of Fuchs’ heterochromic iridocyclitis. Arch. Opthal.
126 GRAHAM, R. M.: Cytologic diagnosis of cancer, 3rd ed. (Saunders, Philadelphia
1972).
127 GRAY, L. A.: Dysplasia, carcinoma in situ and micro-invasive carcinoma of the
cervix uteri (Thomas, Springfield, ll1. 1964).
128 GREENBERG, S. D. (ed.): Computer-assisted image analysis cytology, Monographs
129 GRUNZE, H.: The comparative diagnostic accuracy, efficiency and specificity of
cytologic techniques used in the diagnosis of malignant neoplasm in serous effusions
130 GUPTA, P. K., ALLBRITTON, N., EROZAN, Y. S. and FROST, J. K.: Occurrence
of cilia in exfoliated ovarian adenocarcinoma cells. Diag. Cytopathol. 1: 223-225
(1985).
131 GUPTA, P. K. and FROST, J. K.: Cytologic changes associated with asbestos exposure.
132 GUPTA, P. K. MYERS, J. D., BAYLIN, S. B., MULSHINE, J. L., CUTTITTA, F.
and GAZDAR, A. F.: Improved antigen detection in ethanol-fixed cytologic specimens:
134 HAAM, E. von and SCARPELLI, D. G.: Experimental carcinoma of cervix; comparative
136 HAMKALO, B. A., MILLER, O. L., Jr. and BAKKEN, A. H.: Ultrastructure of
(1973).
138 HANCOCK, R. and HUGHES, M. E.: Organisation of DNA in the interphase
139 HANDLEMAN, S. L., SANFORD, K. K., TARONE, R. E. and PARSHAD, R.: The
cytology of spontaneous neoplastic transformation in culture. In Vitro 13: 526-536


The Cell in Health and Disease 296


146 HUMBOLDT, A. von: Cosmos (Gottascher 1845) (Transi.: E. C. OTTE (Harper and Bros., New York 1850)).


156 KOSS, L. G. and SHERMAN, A. B.: Image analysis of cells in the sediment of voided urine, in S. D. GREENBERG (ed.), Computer-assisted image analysis cytology,


References 297


174 LOPES CARDOZO, P.: Atlas of clinical cytology (Targa b.v. 's-Hertogenbosch, Leiden,


References 299


206 PATTEN, S. F., Jr.: Diagnostic cytopathology of the uterine cervix, 2nd ed. (S. Karger,


References 301


253 SCHMID, F. and STEIN, J. (eds.): Cell research and cellular therapy, 2nd ed. (Ott, Thoune, Switzerland 1967).


274 TAKAHASHI, K. and TASHIIO, Y.: Binding of antibodies against Histone H1 to
275 TANAKA, N., IKEDA, H., UENO, T., MUKAWA, A. and KAMITSUMA, K:
Field test and experimental use of CYBEST Model 2 for practical gynecologic mass
277 THOMA, F, and KOLLER, Th.: Influence of histone H1 on chromatin structure. Cell
278 THOMA, F. and KOLLER, Th.: Unravelled nucleosomes, nucleosome beads and
higher order structures of chromatin: Influence of non-histone components and Histone
279 THOMA, F., KOLLER, Th. and KLUG, A.: Involvement of histone H1 in the organization
of the nucleosome and of the salt-dependent superstructures of chromatin. J.
280 TRUMP, B. F. and ARSTILA, A. U.: Cellular reaction to injury, in M. LaVIA and R.
281 TRUMP, B. F., GOLDBLATT, P. J. and STOWELL, R. E.: Nuclear and cytoplasmic
changes during necrosis in vitro (autolysis); an electron microscopic study. Am. J.
Pathol. 43: 23a (1963).
282 TYRER, H. W., FROST, J. K., PRESSMAN, N. J., ADAMS, L. A., ALBRIGHT,
C. D., VANSICKEL, M. H. and TIFFANY, S. M.: Automatic cell identification and
enrichment in lung cancer: IV. Small cell carcinoma analysis by light scatter and two
283 TYRER, H. W., GOLDEN, J. F., VANSICKEL, M. H., ECHOLS, C. K., FROST,
References 303
J. K., WEST, S. S., PRESSMAN, N. J., ALBRIGHT, C. D., ADAMS, L. A. and
GILL, G. W.: Automatic cell identification and enrichment in lung cancer. II. Acridine
orange for cell sorting of sputum. J. Histochem. Cytochem. 27: 552-556
(1979).
cell identification and enrichment in lung cancer. V. Adenocarcinoma and large
285 ULMAN, J. E., KOPROWSKA, I. and ENGLE, R. L., Jr.: A cytologic study of
and identification of intracellular calcium crystals in pulmonary specimens.
287 VILLARREAL, L.: A paranuclear extract contains a unique set of viral transcripts
288 VINCENT, W. S. and MILLER, O. L., Jr.: International symposium on the nucleolus,

289 VIRCHOW, R.: Die Cellularpathologie (Berlin 1858).


The Cell in Health and Disease 304


Subject Index

Acini 143-144, 222-223, 238-239
Adenocarcinoma 4-5, 10,42, 134-135, 224-244
Aging 14, 97, 109
Atypia 16,22-25, 110-125, 165-166, 187-202, 245-261
Atypical cell types 16, 26-28, 146, 165, 203, 245,262,279
Atypical exaggerated transformational squamous metaplasia 254-256
Atypical squamous metaplasia 16, 22-25, 110-125, 165-166, 187-202, 245-261
Automation of cell and tissue analysis 8-11,256

Background evaluation 32-50
Bare nucleus
false (high N/C ratio), malignancy 107-108, 141-142, 282-287
true (not intact cytoplasm), degeneration 107-108
Barr body 154-157
Basal cell carcinoma 264-266
Bile pigments 39-40, 230, 232-233
Biologic behavior 12-28
functional differentiation (more at: Functional differentiation)’26-2 8, 145-287
accuracy of cell typing 149-152
caveat 150

cell types 146-147 (also see: Functional differentiation)
degree of maturation and functional
differentiation 148-149
keratinizing stratified squamous
epithelium 153-164
transcription and translation (protein
synthesis) 147-148
general activity 12-26, 85-144
euplasia, baseline activity 12-14,
86-96
malignant neoplasia, cancer 25-26,
126-144
proplasia, increased activity 16-25,
110-125
retroplasia, decreased activity 14-17,
97-109
Biologic processes and patterns 3-4
Burkett’s lymphoma 272-275

Cancer
adenocarcinoma 4-5, 10, 42, 134-135,
224-244
basal cell carcinoma, pigmented
264-266
fibrosarcoma 266-267
large cell undifferentiated 10, 17, 202,
225, 279-282
leiomyosarcoma 267
melanoma 262-266
pigmented carcinoma 278
poorly differentiated 7
rhabdomyosarcoma 267-268
sarcoma 266-278
small cell cancer 202, 225, 279,
282-285
squamous cell carcinoma 8-9, 136-137,
165-186, 198-202
transitional cell carcinoma 10, 137, 251,
280
Subject Index 306

‘Cannibalism’ (see Pearl formation)
Carbon 39—40
Carcinogenesis 18-25, 187-202, 245-261
Carcinoid syndrome, with undifferentiated cancers 279
Carcinoma
adenocarcinoma 4-5, 10, 42, 134-135, 224-244
basal cell carcinoma 264-266
choriocarcinoma 278
in situ carcinoma 188-189, 194-197
large cell undifferentiated 10, 17, 202, 225, 279-282
mixed differentiation 278
pigmented carcinoma 39-40, 232-233, 262-266
small cell carcinoma 202, 225, 279, 282-285
squamous cell carcinoma 8-9, 136-137, 165-186, 198-202
transitional cell carcinoma 10, 137, 251, 280
Casts 38-39, 46
Cells, separated and isolated 2-3
Cell types
typical 26-28, 146-147, 153-164, 203-223, 245-261
Centrioles 204, 206, 208, 226-227
Choriocarcinoma 278
Chromatins 65-75
fibers, condensation, packing, organization
higher order packing 72-73
mitosis and chromosomal packing 68-69, 73
nucleosome 68-70
10nm nucleosomal fiber 70-71
30nm fiber 71-72
2nm DNA molecule 66-67
organization
biologically active loops into
parachromatin 65
topological 73-75
pattern in
euplasia 88-93
in situ carcinoma 187-191, 194-197
invasion 196-200
malignant neoplasia 126-140, 198-199
proplasia 110-119, 192-193
retroplasia 98-106
Chromatophilia, nuclear 81-82
Chromocenter 83, 154-156
vs nucleolus, importance of routine
staining 65-66, 268-270
Chromosome 65, 68, 156-157
at metaphase 68-69, 73
X-sex, condensed, Barr body 154-157
Ciliocytophthoria 48—49, 108
Co-carcinogenic set 19-25, 256
Coexisting related lesions
squamouse cell carcinoma 200-201
squamouse metaplasia 260-261
Columnar epithelium
atypical functional differentiation
224-244
to squamous metaplasia 245-261
typical functional differentiation
203-223
Computer assistance 8-11, 256
Concentration 31
Criteria of
baseline activity, euplasia (i.e.: healthy, nonstressed, textbook ‘normal’)
86-96
decreased activity, retroplasia (i.e.: injury, aging, degeneration, death, necrosis) 97-109
increased activity, proplasia (i.e.: stimulation, repair, replication, premalignant neoplasia) 110-125
malignancy, malignant neoplasia (i.e.: invasive cancer) 126-144
Cross striations in rhabdomyosarcoma 267
Curschmann’s spiral 46—47
asthmatic vs carcinomatous 47

Subject Index 307

Cushing’s syndrome with poorly or undifferentiated carcinoma 279
Cytocentrum 208, 230

Death 14-15, 41-15, 97-109, 247
Degeneration 14-15, 41-45, 97-109, 236-237, 247
Deoxyribonucleic acid (see DNA)
Diagnostic true tissue fragment (see DTTF)
Dorothy Reed cell (see Reed-Sternberg cell)
DNA amount and character
automated evaluation 8-11, 256
human evaluation 65-66, 82-84, 98-102, 111-116, 127-133
DNA condensation and packing 67-68
DNA molecule and associated proteins
(see, also, Chromatin) 66-67
staining with Feulgen, propidium iodide, acridine orange, etc. 65
staining with hematoxylin 65-66
DTTF (diagnostic true tissue fragment) 87, 94-94, 96
adenocarcinoma 226, 231-233, 235, 241-243
basal cell carcinoma 266
Burkitt’s ‘starry sky’ tingible macrophages 274
columnar epithelium 53, 87, 204, 207
criteria 96
keratinizing stratified squamous epithelium 163-164
large cell undifferentiated cancer 282
lymphoma vs leukemia 270-271
malignant melanoma 263
malignant neoplasia 143-144
small cell cancer 287
squamous cell carcinoma 182-186
Dyskaryosis 112-115, 120-125, 191-193, 258-259
immature 124, 125
mature columnar 124-125
mature squamous 122-123
moderately mature 123-124, 125
other 125
Dyskeratosis 175-181, 252-253
Dysplasia 16, 18, 21-23, 24-25, 110-125, 165-166, 187-202, 245-261

Ecto-endoplasm of atypical keratinization 166-171, 177-181, 229-230, 253
vs biphasic cytoplasm in ‘early’ adenocarcinoma cells and histiocytes 229-230
vs cell degeneration 107
Endoplasmic reticulum 93, 206-208, 229-230
En face orientation 207, 220, 222
Environment, monitoring and evaluation 50
atypical epithelial reactions 16, 22-25, 110-125, 165-166, 187-202, 245-261
automated assistance 8-11
bleeding, acute and chronic 38-41
chronic irritation 18-25, 110-125, 165-166, 187-202, 245-261
inflammation and infection 32-38
necrosis and obstruction 41-50
patterns and processes 3-4
time sequential evaluation 6-8
Eosinophils in
Hodgkin’s disease 276-278
hypersensitivity 34
subacute inflammation 34
Euplasia 12-14, 86-96

Fatty degeneration 106-107
Female X-sex chromocenter 154-157
Feulgen stain of DNA 65
Fibrin 35, 38-11, 170-171
Fibrosarcoma 266-267, 278
Fixation and preservatives 30,43-44
improper 43-44
Follicular chronic inflammation
36-37
Foreign bodies 38, 50
Functional differentiation 12, 26-28, 123,
145-287
accuracy of cell typing 149-152
caveat 150
cell and tissue types 146-147
degree of maturation and functional
differentiation 148-149
transcription and protein synthesis
147-148

Subject Index 308

Functional differentiation (cont.)
in atypical and developing cancer
states 26-28, 123,146, 191,
192-201, 245-261
atypical columnar epithelium
224-244
atypical stratified squamous
165-186
degeneration 106-109
developing cancer 187-202
developing invasion capabilities
196-200
in situ carcinoma paradox 87-196
proplasia 119-125
squamous metaplasia
development 245-261
transformational squamous
metaplasia 250-251, 254-256
in cancer 191
adenocarcinoma 2, 4-5, 10, 42, 134-135, 224-244
basal cell carcinoma 266
Burkitt’s lymphoma 272-275
choriocarcinoma 278
fibrosarcoma 266-267, 278
Hodgkin’s disease 276-278
large cell undifferentiated cancer
10, 17, 202, 225, 279-282
leiomyosarcoma 267, 278
leukemia 268-270
lymphoma 268-278
malignant histiocytosis 276
malignant melanoma 262-266
mixed differentiation 278
mycosis fungoides 274-276
non-Hodgkin’s lymphoma
271-276
pigmented 39-40, 232-233, 262-266
plasmacytic lymphoma 272
rhabdomyosarcoma 267-268, 278
sarcoma 266-278
Sezary’s syndrome 274-276
small cell (undifferentiated) cancer
202, 225, 279, 282-285
squamous cell carcinoma 8-9, 136-137, 165-186, 198-202
transitional cell carcinoma 10, 137, 251, 280
in typical nonmalignant states
columnar epithelium 203-223
keratinizing stratified squamous
epithelium 153-164
transitional epithelium 251
urothelium 251
Gene 65
General biologic activity
euplasia 12-14, 86-96
malignant neoplasia 25-26, 126-144
proplasia 16-25, 110-125
retroplasia 14-15, 97-109
Genome 27, 65
Giems stain (see Romanowsky stain)
Glands 143-144, 222-223, 238-239
Glycocalyx 214-215, 220-221
Golgi complex 93, 272, 204, 206-208,
226-227, 230, 272
Granules 38-40, 262-266

Healing 16-25, 110-125
Hematoxylinophilia 81-82
Hematoxylinophilia of DNA-associated
proteins 65-66
Hemorrhage 35, 38-41, 170-171,180
Hemosiderin 35, 38-41, 170-171, 180
Herpes simplex 99, 102-104
Herxheimer's spiral 166-167, 170-171,178
Higher order packing of chromatin 72-73
Histiocyte 107, 125,218-219
‘active’ or proplastic 125
multinucleated giant 44-45
small and large 35
vs columnar cell 218—219
vs degeneration vs secretion 107, 232
vs ‘early’ adenocarcinoma 135, 229, 234
Hodgkin’s cell 276-277
Hodgkin’s disease 276-278
Hof 208
Hyalin 107, 159, 176-181, 253
Hyperchromasia in
malignant neoplasia 127-128
proplasia 111
retroplasia 98-99

Subject Index 309
Hyperdistended secretory vacuoles
210-212, 231, 234-236, 242-243, 248-249
Hypersensitivity 33-34

Immunocytodiagnosis
in carcinoma 279
in lymphoma and leukemia 268-278

Infection
acute 33-34
chronic 34—38, 44-45
subacute 34
tuberculosis 44-45
viral 48-49, 98-99, 102-103, 104, 108

Inflammation 33-38
acute 33-34
chronic 34-38, 44-45
chronic granulomatous 38, 44-45
follicular 36-37
hypersensitivity 34
subacute 34

Injury 13-25, 97-109, 245-261

Inner nuclear membrane 60


Intercellular bridges 163-164, 168-169, 183-186, 252, 258-259

vs intercellular vacuoles of degeneration 105, 186

Intermediate cell 156, 161-162

Intraepithelial neoplasia 24-26, 187-202, 252, 254-261

Invasive behavior, morphology of 25-26, 126-144, 196-200

Irritation 18-25, 245-260

Isolated cells 2-3

Junctional complex (see tight junction)

Karyomegaly 98-99, 110-111

Karyopyknosis 98-100, 157, 170-171, 173-175, 252
Keratinization 158-160, 175-180, 192-194
keratinizing granules 154-155
Keratinizing stratified squamous epithelium
atypical functional differentiation 165-186
from columnar epithelium by squamous metaplasia 245-261
typical functional differentiation 153-164
Keratinizing stratified squamous metaplasia phase 251-254
Koehler illumination, for highest resolution and identifying pigments 38-40, 230
in identifying pigments/granules 38-40, 230, 232-233
in leiomyosarcoma 267
in melanoma and pigmented basal cell carcinoma 262-266
in rhabdomyosarcoma 267-268
in verifying intact cell membrane 108, 141, 192, 286

Large cell lymphoma 271
Large cell undifferentiated cancer 10, 202, 225, 279-282
Leiomyosarcoma 267, 278
Leukemia 139, 268-271
Leukemia and lymphoma 139, 268-270, 271
leukemia vs lymphoma, differentiation 270-271
benign vs malignant leukocytes 139
Leukocytes, intracellular, in secretion, degeneration or phagocytosis 226, 232-234, 236-237
benign vs malignant 139
Luminal border 222-223
terminal bar, tight junction zonula 53, 204,214-215, 219-221,223
terminal plate, ciliary rootlets 48-49, 213, 214-215, 219, 235

Lymphocytes
benign vs malignant 139
in chronic inflammation 34-38
in follicular inflammation 36-37
in granulomatous inflammation 38
in lymphatic blockade 36-38
in subacute inflammation 34
in viral infection 33-34

Subject Index 310

Lymphoma 139, 268-278
Hodgkin’s disease 276-278
non-Hodgkin’s lymphoma 271-276
vs benign lymphocytes 139
Burkitt’s 272-275
classifications of 271-272
cytopathologic groupings 271-272
intermediate or mixed cell 269, 271
International Working Formulation of 271
large cell 271, 272-273
malignant histiocytosis 276
mycosis fungoides 274-276
plasmacytoid 272
Sezary’s syndrome 274-276
small lymphocytic 271
vi leukemia, differential 270-271
Lymphosarcoma (see lymphoma)

Macrophage 107, 125, 218-219
multinucleated giant 44-45
small and large 35
vi degeneration vi secretion 107, 232
Malignant criteria (see Criteria of)
Malignant histiocytosis 276
Malignant lymphoma (see Lymphoma)
Malignant melanoma 228, 262-266
Malignant neoplasia (also see Cancer) 12, 25-26, 126-144
Malignant neoplasia and potential developing neoplasia (illustrations)
electron micrographs
in situ carcinoma 188-189
lung cancer 78-79
nuclear membrane shape 58-59, 136-137
poorly differentiated 7
proplasia 115
squamous metaplasia 184-185
light microscopy
adenocarcinoma 4-5, 10, 42, 134-135, 226, 231-235, 237, 241
criteria 128-129, 191
hepatoma 232-233
Hodgkin’s disease 277
in situ carcinoma 188, 194-197
large cell undifferentiated 10, 281
lymphoma
Burkitt’s type 274-275
Hodgkin’s type 277
intermediate and mixed cell, small
cleaved 269
large cell, large noncleaved
(reticulum cell sarcoma) 272-273
malignant melanoma 263-265
nuclear membrane shape 130, 134-135
pigmented basal cell carcinoma 264-265
proplasia 112, 113, 120, 123, 166-167, 192-193, 248-249, 258-259
small cell carcinoma 282-285
squamous cell carcinoma 8-9, 136-137, 168-172, 174, 178-179, 184-185, 198-202
transitional cell carcinoma 10, 137
Melanin 39-40, 230, 262-266
Melanoma (see Malignant melanoma)
Metaplasia 22-23, 27-28, 245-261
Metastatic cancer 26
Methylcholanthrene 258-259
Microvilli 93, 94-95, 108, 206, 208-209, 212-213, 214-215, 220-221
Mitochondria 93, 206, 208-210, 212-216
Mitosis 16-17, 65, 73, 118-119, 137, 139-140, 258-259, 281
and chromosomal packing 73
metaphase chromosome 68-69
Mixed tumors 278
Multinucleation
euaplasia 93
malignant neoplasia 140
proplasia 119
Mycosis fungoides 274-276

Necrosis 14-17, 33, 41-45, 97-109
acute 41
caseous 43-45
liquifying 42
Needle aspiration
background 32
hepatoma 134-135, 232-233

Subject Index 311

Needle aspiration (cont.)
melanoma 262-266
mitoses 139
squamous cell carcinoma 168
staining 29-30
time sequence, tissue reaction 8
tuberculosis 44-45
Non-Hodgkin’s lymphoma 271-276
Nuclear
acidophilic structures 82
nucleolus 75-81, 82, 92, 106, 117, 134-139, 143, 172, 191
hematoxylinophilic structures 82, 89, 98, 111, 127, 143, 190
chromatin 65-75, 82, 89, 100, 111, 128
chromatinic net 82, 83, 90, 102, 114, 131, 170, 190
chromatinic rim 82-83, 90-92, 104, 116, 132, 190
nucleolus associated chromatin 83
parachromatin 83-84, 89, 100, 114, 130, 191
true membrane shape 82, 92, 104, 133, 190
Nuclear envelope 54-64
inner nuclear membrane 60
nuclear lamina 63-64
nuclear pores 61-63
outer nuclear membrane 56-60
perinuclear cisterna 61
Nuclear lamina 63-64
Nuclear matrix 64-65
‘Nuclear membrane’, historically, of light microscopy 54
Nuclear pores 61-63
Nuclear structures in
baseline activity, euplasia 88-93
decreased activity, retroplasia 98-106
electron microscopic detail 52-84
increased activity, proplasia 110-119
in situ carcinoma 187-191
malignant neoplasia 126-149
Nucleus in
adenocarcinoma 225-228
basal cell carcinoma 266
Burkitt’s lymphoma 272-274
cancer 126-140
choriocarcinoma 278
columnar epithelium 203-205
euplasia 88-93
Hodgkin’s disease 276-278
in situ carcinoma 187-191
invasive cancer 196-199
large cell undifferentiated cancer 280
leukemia 268-270
lymphoma 268-277
malignant histiocytosis 276
malignant melanoma 262-266
malignant neoplasia 126-140
mycosis fungoides 274-276
plasmacytoid lymphoma 272
proplasia 110-119
retroplasia 98-106
sarcoma 266-268
Sezary’s syndrome 274-276
small cell undifferentiated cancer 286-287
squamous cell carcinoma 168-174
squamous metaplasia 246, 247, 250, 252, 254-256
stratified squamous epithelium 153-157
Nucleo-cytoplasmic ratio
ratio 107-108, 141-142
relationships 142
Nucleolus 75-81, 84
associated chromatin 81
biosynthetic functions 78-80
formation 76-77
in adenocarcinoma 228
in basal cell carcinoma 264-266
in choriocarcinoma 278
in columnar epithelium 205
in euplasia 92
in Hodgkin’s disease 276-277
in in situ carcinoma 191
in invasive cancer 196-199
in large cell undifferentiated cancer 280
in leukemia 268-270
in lymphoma 268-278
in malignant melanoma 262-266
in malignant neoplasia 134-138
in proplasia 117
in retroplasia 106

Subject Index 312

Nucleolus (cont.)
in sarcoma 266
in small cell cancer 284-286
in squamous cell carcinoma 172
morphology 77-79
transport of RNA 80-81
vs chromocenter, importance in routine
staining 65-66, 268-270
Nucleosomal fiber, the 10nm chromatin
fiber 70-71
Nucleosome 68-70

Obstruction 44-50
inspissative 46—47
intermittent 48
physiologic 48-50
release 47—48
Outer nuclear membrane 56-60

Papanicolaou stain (see Staining,
Papanicolaou multichromatic)
Parabasal cell 161, 162
Parachromatin 74, 75, 83-84
euplasia 89-91
in situ cancer 188-191
malignant neoplasia 128-132, 134-137,
226-227, 269, 276-277
proplasia 112-115
retroplasia 99-102
Patterns and biologic processes 3-4
Pearl formation (pearly body,
‘Cannibalism’) 163, 164, 168-169, 174,
178-179
Perinuclear cistema 61, 182-183,
219-220, 253-254
Pigment differentiation 38—40, 109,
230-233, 262-266
Pigmented basal cell carcinoma 264-266
Podophyllin effects 258-259
Pollen 48-50
Polyp 143-144, 222-223, 238-239
Preinvasive cancer 25-26, 113, 122,
124-125, 131-132, 141, 187-202, 252,
254-261
Presquamous squamous metaplasia
Processes and patterns 3-4
Proplasia 12, 16-25, 110-125, 245-261
Psammoma body 239-240, 242-243
Reed-Sternberg cell 276-277
Refractive ringing 180-181, 253
Regeneration 16-19, 110-125, 245-261
Repair 16-24, 110-125, 245-261
Reproduction 17
Reticulum cell sarcoma (see Lymphoma, large cell)
Retroplasia 12, 14-17, 97-109, 246-261
Rhabdomyosarcoma 267-268, 278
Ribonucleic acid (see RNA)
Ringing of cytoplasm 180, 253
RNA relationship with
cytoplasmic basophilia 76, 81
nucleolar acidophilia 76, 81
transport 80-81
Romanowsky stains 30, 34, 65-66, 268-270, 277
Sarcoma 266-278
fibrosarcoma 266-267, 278
leiomyosarcoma 267, 278
leukemia 268-270
leukemia vs lymphoma, differential 270-271
lymphoma 268-278
Burkitt’s 272-275
Hodgkin’s 276-278
intermediate or mixed cell 269, 271
large cell 271, 272-273
malignant histiocytosis 276
mycosis fungoides 274-276
plasmacytoid 272
Sezary’s syndrome 274-276
small lymphocytic 271
mixed tumors 278
rhabdomyosarcoma 267-268, 278
Secretion 107, 110, 206-208, 210-212, 226, 229-237, 248-251, 279

well preserved neutrophiles in a secretory cell 226, 232-234, 236-237

Separated and isolated cells 2-3

Serum 35, 38—41, 170-171

Sezary’s syndrome 274-276

Subject Index 313

Shades-of-gray lesions 18-21, 22-25, 187-203, 245-261

Simple columnar epithelium 217

Simple cuboidal epithelium 217

Simple squamous epithelium 217-218

Small cell (undifferentiated) cancer 202, 225, 279, 282-285


Squamous cell carcinoma 8-9, 136-137, 164-186, 198-199, 200-202

Squamous epithelium

keratinizing stratified squamous epithelium 153-164

simple 217-218

Squamous metaplasia 245-261

atypical exaggerated transformational phase 254-256

coexisting related lesions 260-261

keratinizing stratified squamous phase 251-254

outcome and pattern variations 256-260

presquamous phase 248-250

transformational phase 250-251

Staining 29-30

hematoxylin and eosin 30, 34

of chromatin

by hematoxylin of DNA-associated proteins 65-66

by Feulgen, propidium iodide,
acridine orange of DNA molecule
65
Papanicolaou multichromatic 30, 34
in lymphoma and leukemia 268-270, 277
Romanowsky (e.g.: Giemsa, Wright’s) 30, 34
in lymphoma and leukemia 268-270, 277
to differentiate nucleoli from chromocenters 65-66, 268-270
Sternberg cell (see Reed-Stemberg cell and Hodgkin’s disease)
Stimulation 16, 19-20, 110
incessant stimulation 18-20
Stratification 163, 182-183, 253-254
in pearls (pearly bodies) 163-164, 168-169, 174, 178-179
intercellular bridges 163-164, 168-169, 183-186, 258-259
pseudopearls of columnar epithelium 219, 241
Stratified squamous epithelium (see Keratinizing stratified squamous epithelium)
Structural syndrome 4-6, 27, 146
Subacute inflammation 34
Superficial cell 162
Syndromes of structure 4-6, 27, 146

Tadpole cells 108, 166-167, 170-171, 181-182, 202, 253
10nm chromatin fiber, nucleosomal fiber 70-71
Terminal bar (tight junction zonula) 53, 204, 214-215, 219-221, 223, 239
plate (ciliary rootlets) 48-49, 213, 214-215, 219, 235
Thinning of cytoplasm
typical 160-162, 258-259
Third-type cell 201
30nm chromatin fiber 71-72
Tight junction 53, 54-55, 204, 214-215, 220-221, 223
Time-sequential examination 3, 6-8, 43
Tissue fragment
adenocarcinoma 226, 231-233, 235, 241-243
basal cell carcinoma 266
Burkitt’s ‘starry-sky’ tingible macrophages 274
columnar epithelium 53, 87, 204, 207
diagnostic true tissue fragment (DTTF) 87, 92-94, 96

Subject Index 314

Tissue fragment (cont.)
keratinizing stratified squamous epithelium 163-164
large cell undifferentiated cancer 282
lymphoma vs leukemia 270-271
malignant melanoma 263
malignant neoplasia 143-144
small cell cancer 287
squamous cell carcinoma 182-186
Transformational squamous metaplasia phase 250-251
atypical exaggerated transformational squamous metaplasia 254-256
Transitional cell carcinoma 10, 137, 251, 280
Transport of RNA 80-81
Trichomonas 38
Tuberculosis 38, 42, 44-45
Typical cell types 26-28, 146-149, 153-164, 203-222, 245

Undifferentiated cancer 10, 202, 225, 262-287

Vacuoles of degeneration vs phagocytosis vs secretion 107, 206-208, 210-212, 226, 230, 232-237, 248-251
Vims infection acute infection 33-34, 48-50 proplasia followed by retroplasia 98-99, 102-103, 104, 108

Wright’s stain (see Staining, Romanowsky)

X-sex chromocenter 154-157

Monographs in Clinical Cytology
Editor: G.L. Wied

8 D.L. Rosenthal, Los Angeles, Calif.
Cytology of the Central Nervous System

9 Computer-Assisted Image Analysis Cytology
Editor: S.D Greenberg, Houston, Tex.

10 Michael Drake, Melbourne
Gastro-Esophageal Cytology

2 John K. Frost, Baltimore, Md.
The Cell in Health and Disease
An Evaluation of Cellular Morphologic Expression of Biologic Behavior
2nd, revised edition

In clinical histopathology and cytopathology, and in basic cellular biology, recognition of health or disease can be achieved by identification and understanding of morphologic patterns. Structural features are characteristically associated with underlying normal or abnormal biologic processes,
so that biologic behavior is predictably reflected in cellular morphologic patterns and changes. This work, the second, extensively revised and enlarged edition, by the Director of Cytopathology, The Johns Hopkins University and Hospital, explores their recognition, understanding and evaluation.

Fine cytologic detail is stressed as a key to accurate diagnosis and understanding of biologic behavior.

In the years since the original edition, significant advances have been made throughout the entire range of knowledge about the cell, from molecular biology and electron microscopy through clinical quantitative cytology and fine needle aspiration. This edition is extensively illustrated to correlate electron and light microscopy of tissues and cells, and not only presents latest information and concepts to pathologists and cytotechnologists, but also cell biologists and molecular biologists will find new concepts of importance relative to their work.

Biologic behavior is divided into two areas: general activity and functional differentiation. Current knowledge of nuclear structure, as key to general cellular activity, is analyzed and presented with clarity. Typical and atypical functional differentiation are carefully considered by cell type. Cancers of many types are critically examined including squamous cell carcinomas, adenocarcinomas, pigmented cancers, sarcomas, leukemias, lymphomas, large cell undifferentiated and small cell cancers. These areas are evaluated, in light of the heterogeneity of neoplastic progression, from metaplasias, atypias and dysplasias, through developing malignant neoplasias of in situ, invasive and metastatic cancer.

This is an indispensable, fundamental text for clinical and research cytologists, cytotechnologists, histopathologists and cytopathologists concerned with improving their competence and accuracy in diagnostic cytopathology; and also for molecular, cell and general biologists wishing to acquire valuable concepts from the broad understanding it offers.

Cover illustration: © by J K Frost

KARGER