Atlas of
Mineralized
Bone
Histology
H.H. Malluche • M.-C. Faugere

Atlas of
Mineralized
Bone
Histology
H.H. Malluche • M.-C. Faugere

26 black-and-white and 51 color figures with 154 single illustrations, 34 tables, 1986
KARGER

Basel • München • Paris • London • New York • New Delhi • Singapore • Tokyo • Sydney

Hartmut H. Malluche

MD, Professor of Medicine and Director,
Division of Nephrology,
Bone and Mineral Metabolism,
University of Kentucky, Lexington, Ky., USA

Marie-Claude Faugere

MD, Pathologist,
Division of Nephrology,
Bone and Mineral Metabolism,
University of Kentucky, Lexington, Ky., USA

National Library of Medicine, Cataloging in Publication Drug Dosage
Malluche, Hartmut H. The authors and the publisher have exerted every effort to ensure that
Atlas of mineralized bone histology / Hartmut H. Malluche, drug selection and dosage set forth in
this text are in accord with current
Marie-Claude Faugere. - Basel; New York: Karger, 1986. recommendations and practice at the
time of publication. However, in
Bibliography: p. view of ongoing research, changes in government regulations, and the
includes
index. start flow of information relating to drug therapy and drug reactions, the
1. Bone and Bones - pathology - atlases 2. Bone Diseases, Metabolic - reader is urged to check
the package insert for each drug for any change in
pathology - atlases 3. Minerals - metabolism - atlases I. Title indications and dosage and for added
warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

Contents

Foreword IX
Preface X
Introduction XI

Microanatomy and Physiology of Bone 1

1 Functional and Structural Organization of Bone 2
 Axial and Appendicular Skeleton 2
 Compact and Cancellous Bone 2
 The Osteon 2
 Bone Envelopes 2

2 Bone Cells 4
 The Osteoclasts 4
 The Osteoblasts 7
 The Osteocytes 8

3 Lamellar and Woven Bone 10

4 Bone Modeling and Remodeling 12

5 Bone and Mineral Homeostasis 14
 The Role of Bone in Control of Extracellular Calcium
Homeostasis 14

Methodology of Mineralized Bone Histology 17

6 Bone Biopsy 18
Prerequisites for Bone Biopsies 18
Bone Biopsy Instruments 18
Skeletal Sites for Bone Biopsies 20
Indications for Bone Biopsies 22
Osteoporosis 22
Osteomalacia 23
Primary Hyperparathyroidism 23
Renal Bone Diseases 23
Pediatric Diseases 24
Miscellaneous 24
Complications of Bone Biopsies 24

7 Technique of Mineralized Bone Histology 26
Fixation and Dehydration of Bone 26
Embedding of Bone 26
Sectioning 27
Staining of Bone Sections 28
Staining of Structural and Cellular Elements of Bone 28
Staining of Aluminum and Iron Deposits in Bone 28
Histological Identification of the Mineralization Front 32
Double Labeling of Bone 33
Staining of the Bone Marrow 36
Problems and Artifacts 36

8 Evaluation of Mineralized Bone Histology 37
Qualitative Assessment of Bone Histology 37
Histomorphometry of Mineralized Bone Sections 37
Comparison between Grid Technique and Semiautomatic Technique 42
Histomorphometric Data in Normals 45

Mineralized Bone Histology of Metabolic Bone Diseases 49

9 Osteoporosis 50
Definition and Pathogenesis 50
Histologic Pattern of Osteopenia 52
Animal Model for Osteoporosis 54
Causes of Osteoporosis and Association with Other Disorders 56
Effects of Therapy 58

10 Defective Mineralization and Osteomalacia 60
Definition and Histologic Pattern 60
Pathogenetic Mechanisms 62
Effects of Therapy on Histopathology 62

11 Osteosclerosis 64
Definition and Histologic Pattern 64
Causes for Generalized Osteosclerosis 64

12 Bone Disease in Primary Hyperparathyroidism 66

13 Bone Disease Associated with Malignancies 68

14 Renal Bone Disease 70
Definition 70
Bone Disease in Patients with Reduced Glomerular Filtration Rate 70
Bone Disease in Patients with End-Stage Renal Failure Renal Osteodystrophy 70
Pathogenetic Mechanisms 71
Abnormal Vitamin D Metabolism 71
Secondary Hyperparathyroidism 72
Aluminum 72
Calcitonin 74
Dialysis-Related Factors 75

VIII Contents

Histologic Pattern 75
Predominant Hyperparathyroid Bone Disease 75
Mixed Uremic Osteodystrophy 81
Low-Turnover Osteomalacia and Adynamic Uremic Bone Disease 84
Renal Bone Disease Associated with Mild to Moderate Renal Failure 88
Effects of Therapy on Histopathology of Bone 89
Interpretation of Histopathologic Changes after
Therapy 89
Effects of High Dialysate Calcium and Reduced Dietary Phosphate Intake 90
Histopathologic Changes after Therapy of Mixed Uremic Osteodystrophy 91
Therapy of Mild to Moderate Renal Failure 92
Therapy of End-Stage Renal Failure 92
Histopathologic Changes after Therapy of Predominant Hyperparathyroid Bone Disease ... 95
Histopathologic Changes after Therapy of Low Tumover Osteomalacia 97
Histopathologic Changes after Therapy of Aluminum-Related Bone Disease 97
Renal Bone Disease in Patients with Renal Transplantation 100
Renal Bone Disease in Patients with Renal Tubular Defects 100
Renal Bone Disease in Patients with Renal Stone Disease . 101
Bone Disease in Patients with Nephrotic Syndrome 103

15 Paget's Disease of Bone 104

16 Bone Abnormalities Associated with Systemic Disorders 107
Bone Abnormalities Associated with Sarcoidosis and Other Granulomatous Diseases 107
Bone Abnormalities in Patients with Diabetes mellitus . . 108
Osteogenesis imperfecta 109
Oxalosis 111
Bone Abnormalities in Patients with Endocrine Disorders . 111
Parathyroid Glands 111
Thyroid 111
Hypercortisolism 112
Acromegaly 112
Hypogonadism 112
Acidosis 113

17 Bone Abnormalities Resulting from Miscellaneous Causes 114

Predictive Value of Serum Biochemistry for Mineralized Bone Histology 115

18 Correlations between Histopathology of Bone and Serum Biochemistry 116
Foreword

Metabolic bone diseases are becoming an increasingly important part of medical practice because of improved diagnosis and the development of more effective therapy. These conditions cut across the usual specialty boundaries and involve many disciplines including internal medicine, family practice, endocrinology, nephrology, gastroenterology, rheumatology, gynecology, orthopedics, gerontology, radiology, nuclear medicine and pathology.

The value of bone histomorphometry in the management of patients with metabolic bone diseases is well established. First, it is an indispensable research procedure providing unique information that cannot be obtained by other methods. For example, only bone histology can assess the activity of bone cells and quantify bone turnover at the tissue and the cellular level. Second, bone histomorphometry is becoming an increasingly important procedure for the clinical assessment of these patients, particularly those with osteoporosis, osteomalacia and chronic renal failure. Third, information obtained by bone histomorphometry provides an indispensable conceptual framework for understanding the pathophysiology of the various metabolic bone diseases.

In their Atlas of Mineralized Bone Histology, Drs. Malluche and Faugere have provided an important book that will meet the needs of the researcher, the clinician and the student. This book includes extensive information on microanatomy and physiology of bone and a discussion of pathophysiological mechanisms by which alterations in bone cell activity lead to the various metabolic bone diseases. There is detailed information on the methodology of mineralized bone histology which
is required both for setting up this method and for evaluating the results obtained in individual patients. There is also a carefully selected bibliography that will allow a reader with little background information in this area to become familiar with the key articles which have shaped current concepts. Finally, the atlas is profusely illustrated with superb colored photomicrographs exemplifying the histologic appearance of bone in patients with many types of metabolic bone diseases.

The authors are eminently qualified to write this atlas because of their broad experience as clinicians, histomorphometrists and researchers. A book such as this has been needed for some time. It will surely become a major reference source for bone histomorphometry and a valuable guide for all those interested in patients with metabolic bone diseases.

Edward Lawrence Riggs

MD, Consultant,
Division of Endocrinology and Metabolism, Mayo Clinic;
Professor of Medicine, Mayo Medical School

Preface

In recent years, an impressive body of knowledge has been accumulated in the understanding of metabolic bone diseases. Techniques such as bone cell culture, assays of calcitropic hormones, scanning techniques, photon absorptiometry and refinements in X-ray and histologic techniques were instrumental for these accomplishments. Several excellent textbooks have been published in which clinical presentation, pathogenesis and management of metabolic bone diseases are well described. A need exists to integrate bone histology into the variety of available information on clinical and basic features of metabolic bone diseases. It is the aim of this treatise to provide a combination of an atlas and a concise text which should help pathologists
and clinicians in the management of their patients. In addition, this text should help those who face the challenge of setting up a bone laboratory for mineralized bone histology. We tried to avoid complicating the field unnecessarily; the beauty and the usefulness of mineralized bone histology should be illustrated in this book to encourage more investigators and clinicians to become interested and to utilize this young and attractive tool for research and clinical management of metabolic bone diseases.

Many people have facilitated this book. The hundreds of patients who suffered from metabolic bone diseases and presented themselves for diagnostic bone biopsies allowed us to learn, gain experience and to present the variety of histologic abnormalities seen in metabolic bone diseases. We are particularly indebted to the patients who trusted us in the early years, when bone biopsies were considered an experimental procedure by many of our colleagues. Now, we appreciate the opportunity to expand our knowledge through many patient referrals from pathologists, nephrologists, orthopedic surgeons, pediatricians and other specialists throughout the country and the world. It is impossible to list the names of all persons who were of help along the long way of developing the bone biopsy technique, histologic techniques and eventually, in the collection of the presented material and data. Ms. Tomaschkowitz was instrumental during the first steps of setting up our method of mineralized bone histology. Later, Ms. Gisela Malluche contributed greatly to technical improvements and she deserves credit for many innovative ideas which enable us to present the quality of histologic sections shown in this book. The superb skills of Ms. Susan Barragan and Mr. Richard Wheaton were needed for the preparation, cutting and staining of thousands of bone samples. Ms. Kim Holtzclaw, Ms. Margaret Moon, Ms. Connie Prater, Ms. Mary Hood and, especially, Ms. Barbara Campbell have assumed the burden of typing,
retyping and editing the different versions of
the manuscript. We would like to thank them
deeply for their tireless efforts.
We owe respect and thanks to our mentors and
friends: Professors E. Ritz, W. Schoeppe, H. Lange
and S.G. Massry. P. Meunier deserves credit for
kindling M.-C. Faugere’s interest in mineralized
bone histology.
Finally, no words can describe our feelings and
thanks to our families and our children, to whom
the book is dedicated. Their generous understanding,
sympathy and love provided the major force
for the accomplishment of the daily tasks throughout
the years, which allowed us to learn and to collect
what is presented in this book.

Introduction

Histologic evaluation of bone was hampered for
many years by formidable technical difficulties.
The major problem arose from the mineral content
of bone which made it impossible to cut thin sections
for histologic studies. Thus, for research or
diagnostic purposes, bone was studied after removal
of the mineral, that means decalcified, or by
alternate methods such as microradiography, autoradiography
or hand-ground sections. Decalcified
or demineralized bone sections retain the organic
matrix and bone cells if the decalcification process
is carried out carefully. Sections from decalcified
bone can be quite easily done; however, the drawbacks
of decalcified bone histology are obvious
since no information on mineralization status can
be obtained. Microradiography gives only indirect
information on cellular activities, and autoradiography
is useful mainly for research focusing on bone
cell kinetics. Hand-ground bone sections contain
bone mineral, but they are rather thick and bone
cells are usually not interpretable. The introduction
of celloidin [Bloom et al., 1941] and, subsequently,
other plastic monomers [Arnold and Jee, 1954;
Berlyne, 1963; Mollenhauer, 1964; Ruddell, 1967]
allowed the embedding of bone in plastic materials. Further refinements were needed such as additives to the plastic monomer which affect the hardening process, resulting in plastic blocks of nearly the same hardness as the embedded bone. ‘Sledge’ or ‘heavy duty’ microtomes equipped with diamond- or carbide-edged knives previously used for metallurgy or industrial purposes mainly were another necessary complementary step in the development of acceptable histologic techniques of bone without removal of the mineral, that is, mineralized bone histology. The introduction of tetracycline double labelling [Milch et al., 1958; Frost, 1963a, 1969] as a means to advance from static bone histology to dynamic evaluation of bone formation and resorption combined with manual [Merz and Schenk, 1970] or semiautomatic [Malluche et al., 1982a] quantitative histomorphometric methods provided the essentials to make mineralized bone histology a valuable tool for routine diagnosis, management and research of metabolic bone diseases.