set forth this text
are In accord with current recommendations and practice at the lime of publication However, In
view of ongoing
research, changes In government regulations, and the constant flow of information relating to drug
therapy and drug
reactions, the reader is urged to check the package insert for each drug for any change in
dosage and
for added warnings and precautions This is particularly Important when the recommended agent is
a new and/or
infrequently employed drug

All rights reserved
No part of this publication may be translated into other languages, reproduced or utilized In any
form or by any
means, electronic or mechanical including photocopying, recording. microcopying, or by any
information storage
and retention system. without permission in writing from the publisher

Copyright 1986 by S Karger AG, POBox, CH-4009 Basel (Switzerland)
Printed In Switzerland by Boehm-Hutter AG. Remach BL
ISBN 3-8055-433()-1

Contents

Acknowledgement XI
Preface XIII

Gas Transfer Kinetics of
Red Blood Cells, Plasma and Lung Tissue

Holland, R.A.B. (Sydney): O2 Uptake Kinetics of Red Blood Cells 1
Yamaguchi, K. (Tokyo); Hook, G. (Regensburg); Scheid, P. (Bochum); Piiper, f.
(Göttingen): O2 Transfer Kinetics of Red Blood Cells Determined by Stopped-
Flow Techniques 5
Scheid, P. (Bochum); Hook, e. (Regensburg); Yamaguchi, K. (Tokyo); Puper, J.
(Göttingen): Factors Limiting O2 Transfer of Red Blood Cells: Model Analysis
Using Results from Stopped-Flow Experiments 11
Estimating Contact Time from O2 and CO2 Concentrations during Rebreathing
Air. 18
Gros, G.; Geers, e. (Essen): Evidence for Interstitial Activity of a Sarcolemmal Carbonic
Anhydrase in Skeletal Muscle from Application of Macromolecular Carbonic
Anhydrase Inhibitors 22
Geers, e.; Heming, T.A.; Gros, G.; Bidani, A.; Crandall, E.D. (Essen and Los Angeles, Calif.): Effects of Intra- and Extracellular Carbonic Anhydrase on CO2 Excretion and Intravascular pH Equilibrium in the Isolated Perfused Rat Lung 26
Schuster, K.-D. (Bonn): CO2 Equilibration in Lungs, Measured by Isotopic CO2 30

Contents VI
Moll, W. (Regensburg): The Various Components of Diffusional Resistance to Alveolar Oxygen Uptake 47

Alveolar-Capillary Gas Transfer
Weibel, E. R. (Bern); Taylor, CR. (Bedford, Mass): Morphometric Modelling of Pulmonary Diffusing Capacity 52
Haab, P. Geiser, f. (Fribourg): Relationship between O2 and CO Diffusing Capacities 56
lchmose, Y.; Scotto, P.; Meyer, M.; Pilper, f. (Gottingen): Determination of Pulmonary CO Diffusing Capacity by Rebreathing in Awake Dogs during Hypoxia, Hypercapnia, and Exercise 60
Lewis, S.M. (Los Angeles, Calif.): Inhomogeneous Distribution of Diffusing Capacity 63
Kawashiro, T.; lchmose, Y.; Yokoyama, T. (Tokyo): Uneven Distribution of Ventilation and Diffusing Capacity in Patients with Chronic Pulmonary Emphysema. 67
Haab, P.; Spahr, I. (Fribourg): Whole Blood Diffusive Conductance for O2 and CO in Open Tonometers 79
Cotton, D.J.; Mink, f. T.; Graham, B.L. (Saskatoon): Effect of Breath-Hold Time on Mean and Dynamic Measurements of CO Diffusing Capacity 82
Crapo, R.O. (Salt Lake City, Utah); Crapo, I.D. (Durham, N.C.); Weibel, E.R. (Bern): Comparison of Physiologic and Morphometric Estimations of the Components
Intrapulmonary Gas Mixing

Meyer, M.; Hook, C; Pliper, f. (Gottingen): Alveolar Slope: Experimental Data and Interpretations 96
Hook, C; Wolper, H.; Meyer, M.; Pliper, f. (Gottingen): Model Simulation of Alveolar Slopes 100

Contents VII

Heyder, I.; Blanchard, J.D.; Brain, J.D. (Boston, Mass.): Examining Convective Gas Mixing by Aerosols 111
Schrikker, A.CM.; Vries, W.R. de (Utrecht); Zwart, A. (Zeist); Luijendijk, S.CM. (Utrecht): The Slope of the Alveolar Plateau During Washout of Tracer Gases from the Alveolar Space and Mixed Venous Blood in Man 114
Arieli, R.; Wiener, F. (Haifa): Alveolar Plateau Caused by P-V Heterogeneity and Cardiogenic Oscillations Generated by Differential Effect of the Heart - A Model 117
Paiva, M.; Vander Borght, G.; Muylem, A. van (Brussels): Intra-Acinar Contribution to the Slope of the Alveolar Plateau 121
Van Liew, H.D.; Lapennas, G.N. (Buffalo, N.Y.): Assessment of the Defect in Distribution and Mixing at Vanous Lung Volumes 126

Dead Space, Ventilation Distribution

Zwart, A. (Zeist); Hoorn, E.; Jansen, J.R. C (Rotterdam): Dead Space: A Very Vividly Varying Ventilatory Variable 130
Cibella, F.; Mangiacavallo, A.; Pipitone, P.; Macaluso, C; Bonsignore, G. (Palermo): Evaluation of Reproducibility of a Multibreath Nitrogen Washout Test in Normal Subjects 138
Guenard, H.; Manier, G.; Castaing, Y.; Marthan, R. (Bordeaux): Series Dead Space
for Inert Gases in Healthy Subjects .. 141
Wolff, G.; Brunner, J.x. (Basel): Effect of Ventilation Variables in Mechanically
Ventilated Patients ... 144
Worth, H. (Dusseldorf): Expirogram Phase II in Healthy Subjects and in Patients
with Emphysema ... 149
Hyatt, R.E.; Bar-Yishay, E.; Abel, M.D.; Rodarte, J.R. (Rochester, Minn.): Influence
of the Heart on the Vertical Gradient of Transpulmonary Pressure in
Head-Up Dogs 154

High Frequency Ventilation

Chang, H.K. (Los Angeles, Calif.): Gas Transport Mechanisms during High Frequency Ventilation .
........ 157
Allen, J.L.; Frantz, III, J.D.; Fredberg, J.J. (Boston, Mass.): Regional Alveolar
Pressure during Large Amplitude Periodic Flow 161
Gavriely, N. (Haifa); Solway, J.; Drazen, J.M. (Boston, Mass.): Gas Exchange during Combined
High and Low Frequency, Low Tidal Volume Ventilation in
Dogs ... 165
Schulz, H.; Hahn, G.; Meyer, M. (Gottingen): Gas Mixing in Dog Lungs During
High-Frequency Ventilation Studied by Partial Washout-Single Exhalation
Technique 169

Contents VIII

[sabey, D.; Har/., A. (Creteil); Chang, H.K. (Los Angeles, Calif.): Pressure Change
and Gas Mixing Induced by Oscillations in a Closed System 173
Ventilation/Perfusion Inhomogeneity
Robertson, H. T.; Hlastala, M.P. (Seattle, Wash.): Beyond Partition Coefficients-
Individual Properties of Infused Inert Gases Influencing Their Elimination from
the Lung ... 177
Lung Density and VA/O Studied with Positron Emission Tomography: Results
in Normal Subjects and in Chronic Airflow Obstruction 182
Schmolier, T (Hamburg); Schumacker, P. T (Chicago, III.); Wagner, P.D.; West,
1.B. (La Jolla, Calif.): Effects of Ventilation with 100% O2 on Gas Exchange
during Hypoventilation of the Left Lung 188
Burns, B. (Baltimore, Md.); Sandage, B. W. (Chicago, Ill.); McCauley, M.; Andre, S.
(Baltimore, Md.); Sheir, R.M. (Cairo); Stene, 1.K. (Baltimore, Md.): Ventilation/Perfusion
Inequalities in Trauma Patients 193
Yokoyama, T; Kawashiro, T; Okada, Y (Tokyo): Significance of Ventilation-Perfusion Ratio
Unevenness in Respiratory Failure 196
Marthan, R.; Manzer, G.; Castatng, Y; Guenard, H. (Bordeaux): Ventilation Perfusion Inequalities
in Chronic Obstructive Lung Disease 200
Manzer, G.; Castaing, Y; Marthan, R.; Guenard, H. (Bordeaux): Ventilation Perfusion Inequalities in Pulmonary Embolism 204
Hedenstierna, G. (Huddinge): Ventilation-Perfusion Distribution during Anaesthesia 216
Rehder, K.; Kraye, S.; Beck, K. e. (Rochester, Minn.): Thoracic Volume is Reduced by Anesthesia-Paralysis 221
Lung Function Under Stress (Exercise, High Altitude)
turek, Z. (Nijmegen); Scotto, P. (Naples); Vos, 1.A. (Nijmegen); Barilian, R. (Naples); d'Brot, 1. (Lima); Ringnalda, B.E.M. (Nijmegen); Monge, e. (Lima): Pulmonary Diffusing Capacity in Andean Natives at High Altitude. 236 Contents IX
Scotto, P.; /chinose, Y; Loeppky, I.A.; Patane, L.; Meyer, M.; Piiper, I. (Gottingen): Alveolar-Capillary Diffusion of O2 during Exercise in Hypoxia 239
Prampero, P.E. di; Cerretelh, P. (Geneve): Breath-by-Breath Measurement of Alveolar Gas Transfer at Exercise 242
LULjdendijk, S.C.M. (Utrecht): A Model for the Pulmonary Contribution to the Control of Breathing 246
Orr, I.A. (Lawrence, Kans.); Shams, H. (Bochum); Fedde, M.R. (Manhattan, Kans.); Scheid, P. (Bochum): Addition of HCl to the Blood without Lowering Circulation Blood pH Increases Right Ventricular Blood Pressure and Respiratory Rate in Cats 253
Cerretelli, P.; Prampero, P. E. dl; Howald, H. (Magglingen): Adjustments to Exercise at Altitude 256
Casaburi, R.; Wasserman, K. (Torrance, Calif.): Modulators of Ventilation, CO2 Output and O2 Uptake Kinetics during Exercise 262
Subject Index 271

Acknowledgement
The symposium was kindly supported by

Deutsche Forschungsgemeinschaft
Niedersachsisches Ministerium für Wissenschaft und Kunst
Max-Planck-Gesellschaft

Cassella AG, Frankfurt
Dragerwerk AG, Lubeck
Dr. Karl Thomae GmbH, Biberach
Radiometer Deutschland GmbH, Willich
Erich Jaeger GmbH & Co. KG, Wurzburg
Wsthoff, GmbH, Bochum

Preface

This volume documents the proceedings of an International Symposium on Pulmonary Gas Exchange: Structure, Function, Modeling, Disturbances, held at Gottingen, July 8-12, 1985. The conference was intended as a comprehensive state-of-the-art overview on investigations, concepts, controversies and assessment of pulmonary gas exchange in health and disease and was in the tradition of the first one held in 1980 [published in this series, Prog. Resp. Res., vol. 16, 1981]. Contributors were scientists actively involved in the forefront of their fields. In the symposium, a number of reviews in major areas of respiration physiology were complemented by research communications blending current theoretical understanding with the most recent experimental data. Multidisciplinary interaction revealed that a particular problem could be approached from various angles and stimulus given for further investigation. Principal topics of the presentations were gas transfer kinetics of red blood cells, plasma and lung tissue; alveolar-capillary gas transfer with particular emphasis to physiologic and morphometric estimates of pulmonary diffusing capacity; models and mechanisms of impaired gas mixing in lungs; dead space and regional ventilation distribution; mechanisms and gas exchange at high-frequency ventilation; ventilation/perfusion inhomogeneity; lung function under stress such as exercise and altitude.

The proceedings contain the condensed manuscripts of both the oral communications and the posters. Space being limited in this volume, only the programmed presentations could be incorporated. Regrettably, points of substance emerging from discussions during the sessions which constituted an essential part of the meeting could not be included.
Preface XIV

The organizers express their gratitude to the secretaries of the Department of Physiology, Mrs. Irmgard Barteczko, Mrs. Renate Hahn and Mrs. Helgard Rinnert for their assistance at all stages of the meeting and preparation of the publication and to all members of the Department for their cooperation.

We are grateful to Dr. H. Herzog, Editor of Progress in Respiration Research, for the opportunity to publish the proceedings as a volume in this series. Particular thanks are due to Mrs. Denise Greder and Mr. R. Steinebrunner, Karger Publishing Company, for their cooperation.

Göttingen, October 1985

Johannes Piiper
Michael Meyer