Gut Regulatory Peptides: Their Role in Health and Disease

Frontiers of
Hormone Research

Vol. 16

Series Editor
TJ. B. van Wimersma Greidanus, Utrecht

KARGER

Gut Regulatory Peptides:
Their Role in Health and Disease

Volume Editor
E. Blzquez, Salamanca

78 figures and 22 tables, 1987

KARGER

Frontiers of Hormone Research

Cover illustration
Portrait of duodenal mucosa after fixation in isopentane at -140 C in liquid nitrogen and later lyophilization according to binocular microscope view showing abundant v11. Insert transverse section of a duodenal villus in which a cell containing vasopressin-like immunoreactive substance can be seen. P.A.P. technique.
The photos are a kind gift from Professor L. Munoz Barragn, Salamanca, Spain.

Library of Congress Cataloging-in-Publication Data
Gut regulatory peptides.
(Frontiers of hormone research; vol. 16)
Includes bibliographies and index.
1. Gastrointestinal hormones. I. Blzquez, E. (Enrique), 1940-. II. Series: Frontiers of hormone research; v. 16
Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All right reserved.
No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Copyright 1987 by S. Karger AG, P.O. Box, CH-4009 Basel (Switzerland)
ISBN 3-8055-4520-7

Contents

Foreword VII
Creutzfeldt, W. (Gottingen): The Changing Concept of the Enteroinsular Axis 1

Morphofunctional Aspects of Gut Cells Producing Regulatory Peptides

Holst, J.J. (Copenhagen): Peptidergic Innervation of the Langerhans' Organ 15
Junquera, C.; Azanza, M.J.; Parra, P.; Aisa, J.; Peg, M.T.; Garin, P. (Zaragoza): Peptidergic Innervation in Amphibian Stomach 21
Aisa, J.; Azanza, M.J.; Junquera, C.; Peg, M.T.; Garin, P. (Zaragoza): Intrinsic Innervation in Birds Anterior Gut 30
Vasallo, J.L.; Blzquez, J.L.; Snchez Franco, F.; Lpez Gil, A.; Toranzo, D.; Pastor, F.E.; Muoz Barragn, L. (Salamanca): Immunocytochemical Study on the Presence of a Vasopressin-Like Immunoreactive Substance in the Mammalian Gut 43

Relevance of Peptide Receptors Present in Gut Epithelium.
Physiological Effects
Rosselin, G. (Paris): Physiological Relevance of Receptor Characterization in the Study of the Enteroinsular Axis 51
Fernández-Moreno, M.D.; Serrano-Ríos, M.; Prieto, J.C. (Madrid): Characterization of Specific Insulin Receptors along the Rat Small and Large Intestinal Epithelial Tract 83
Portha, B. (Paris): Growth Pattern of Pancreatic B Cells. Role of Nutrients and Regulatory Peptides 102
Simón, M.A.; Calle, C. (Madrid): Lipolytic Effect of Somatostatin in Rat Adipose Tissue: An in vivo and in vitro Study 111

Glucagon and Related Peptides

Ghiglione, M.; Uttenthal, L.O.; George, S.K.; Bloom, S.R. (London): Intestinal Glucagon-Like Peptides in Man and Pig 121

Contents VI

Mu Doz Barragn, L.; Blázquez, E. (Salamanca): Effect of Nutrients and Gut Peptides on Gastric Glucagon Release by Normal and Diabetic Dogs 145

Role of GIP in Health and Disease

Brown, J.C. (Vancouver): Role of Gastric Inhibitory Polypeptide in Regulation of Insulin Release 157
Krarup, T.; Holst, J.J.; Lindorff Larsen, K.; Madsbad, S. (Hillerød): Heterogeneity of IR-GIP in Normal Subjects and Insulin-Dependent Diabetics 167
Ebert, R.; Creutzfeldt, W. (Gottingen): Metabolic Effects of Gastric Inhibitory Polypeptide 175
Nauck, M.; Stockmann, F.; Schmidt, W.; Ebert, R.; Creutzfeldt, W. (Gottingen): Incretin Effect in Normal and Type 2 Diabetic Subjects and Its Relation to the GIP Response 186

The Entero-Insular Axis and Disease
Although the start of the century saw the identification of gastrointestinal hormones, their existence was only confirmed 50 years later. The great development in this field has not only brought to light a large variety of them, but has also highlighted the diversity of their functions in that they are known to regulate gastrointestinal functions, influencing secretion, absorption, motility and blood flow processes. Apart from endocrine properties, some of these hormones also act as neurotransmitters and neuromodulators, while still others have paracrine effects. Additionally, some gastrointestinal hormones have been found in unforeseen locations, and peptides of neural origin have been found in pancreatic and gastrointestinal endocrine cells. There is thus justification for considering them as regulatory peptides rather than simply hormones.

Previously, relationships were thought to exist between the gut and the endocrine pancreas. The term, enteroinsular axis, was proposed by Unger 18 years ago and then referred to the humoral relationships between the gut and endocrine pancreas and was applied particularly to the hormonal enteroinsular potentiation of insulin secretion in response to the absorption of glucose. To designate the involvement of gut peptides in such a system the term, incretin, has been coined and a number of peptides with incretin activity have been proposed. Today, however, it is accepted that enteroinsular activity may affect other pancreatic hormones and that this occurs not only through humoral routes but also through nervous, neurohormonal and paracrine mechanisms.

In light of recent findings, it was felt necessary to compile a series of contributions to further consolidate the mass of general and specific information existing in the field and which would deal with many of the
morphofunctional, biochemical and clinical approaches to gut peptides. This volume, comprising overviews and original articles, specially emphasizes the morphofunctional aspects of gut cells producing regulatory peptides and peptide receptors in the gut epithelium. Special chapters address glucagon and related peptides and the role of GIP and the enteroinsular axis in health and disease.

I should like to thank S. Karger AG Medical and Scientific Publishers, Basel, for their emciency in the publication of this volume and I am specially indebted to Bayer AG, Boehringer-Mannheim and Hoechst for their financial backing of publication costs.

Salamanca, September 1986 Enrique Blizquez