Neurosurgical Treatment of Persistent Pain

Pain and Headache

Vol. 11

Series Editor
Philip L. Gildenberg, Houston, Tex.

KARGER


Neurosurgical Treatment of Persistent Pain

Physiological and Pathological Mechanisms of Human Pain

Jan M. Gybels, MD, PhD

Professor of Neurology and Neurosurgery, Chief of Clinic of the Department of Neurosurgery, Director Laboratory Experimental Neurology, KUL University of Leuven, Leuven, Belgium

William H. Sweet, MD, DSc, DHC, FRCS Ed (Hon.)

Professor of Surgery Emeritus, Harvard Medical School, Whilom Chief, Neurosurgical Service, Massachusetts General Hospital, Boston, Mass. USA

70 figures and 33 tables, 1989

KARGER


Pain and Headache

Library of Congress Cataloging-in-Publication Data
Gybels, J.
(Pain and headache; vol. 11)
Chapter 1.B. Periodic or Chronic Migrainous Neuralgia - Cluster Headache 70
Clinical Features 70
Neural Pathways Activated during these Pains 72
Temporary Trigeminal Denervation 72
Retrogasserian Lidocaine Block 72
Radiofrequency Rhizotomy 73
Glycerol Rhizotomy 75
Open Trigeminal Rhizotomy 75
Superficial Petrosal Neurectomy 77
Division of the Nervus intermedius 81
Tractotomy of Bulbar Descending Cephalic Pain Tract 83
Autonomic Activity vis-à-vis Attacks of Pain 85
Summary 86
Conclusions 87

Chapter 2. Cranial Nerves VII, IX, X, XI 88
Historical Note 88
Anatomy 88
N. intermedius (Geniculate) Neuralgia 90
Conclusion 91

Contents VII
Section V. Lesions in the Brain Stem 199

Chapter 13. Bulbar Trigeminal Tractotomy and Nucleotomy 199
Bulbar Trigeminal Nucleotomy 204
Multiple Lesions of Descending Cephalic Pain Tract and Nucleus Caudalis ‘DREZ’ Lesions 205
Conclusions 206

Chapter 14. Bulbar and Pontine Spinothalamic Tractotomy 207
Conclusions 209

Chapter 15. Stereotactic Mesencephalotomy 210
Historical Note 210
Stereotactic Coordinates and Target Structures 210
Responses Obtained by Stimulation in the Mesencephalon 211
Somatosensory Evoked Potentials Recorded during Mesencephalotomy 216
Unit Activity Recorded during Mesencephalotomy 216
Indications and Results 217
Adverse Effects 217
Conclusions 219

Section VI. Lesions in the Diencephalon 220

Chapter 16. Thalamotomy 220

Contents X

Historical Note 220
Some Introductory Remarks Concerning Diencephalic Mechanisms of Pain Sensation 220
Ventricaudal Thalamotomy 222
Thalamolaminotomy 225
Stimulation Data 227
Evoked Potentials 228
Unit Activity 229
Effect of Lesions 230
Pulvinarotomy 231
Dorsomedian Nucleus Thalamotomy 232
Thalamotomy of Anterior Nuclei 233
Conclusions 234
Chapter 17. Hypothalamotomy 235
Conclusions 237

Section VII. Pituitary Destruction 238

Chapter 18. Pituitary Destruction 238
Historical Note 238
Technique of Chemical Pituitary Destruction 239
Results of Pituitary Destruction 240
Complications of Chemical Pituitary Destruction 240
Mode of Action 241
Conclusions 242

Section VIII. Lesions in the Telencephalon 244

Chapter 19. Frontal Lobe Lesions 244
Historical Note 244
Clinical Data 245
Rationale for Selection of Brain Target 246
Lesion of Supracallosal Gyrus Cinguli or White Matter Cingulum 247
Conclusions 251
Subcaudate Tractotomy, Inferior Fronto-Medial Leukotomy 251
Conclusions 253

Chapter 20. Pre- and Postcentral Gyrectomy 254
Conclusions 256

Section IX. Lesions in the Autonomic Nervous System 257

Chapter 21. Sympathectomy for Pain 257
Introduction 257
Sympathectomy of Limbs 257
Causalgia 257
Clinical Features 258

Contents XI

Psychological Factors 260
Local Procedures 260
Sympathetic Blocks in Diagnosis and Treatment 261
Sympathetic Trunk 261
Intravenous Regional Sympathetic Block 262
Sympathetic Dystrophy (Sudeck’s Atrophy) 262
Clinical Features 262
Psychological Factors 264
Sympathetic Blocks in Diagnosis and Treatment 264
Results of Surgical Sympathectomy 265
Pathogenesis of Causalgia and Sympathetic Dystrophy 265
Vascular Occlusive Disorders 269
Primary and Secondary Raynaud’s Disease 269
Other Structural Occlusive Disease 269
The Upper Limbs 269
The Lower Limbs 270
Post-Amputation Pain 271
Open Sympathectomy of Limbs 271
Extent of Ganglionectomy 271
Pre-Ganglionic versus Post-Ganglionic Denervation 272
Completeness of Denervation 272
Regeneration 273
Complications 274
Simplified Sympathectomies of Limbs 275
Thermal RF Lesions of Upper Thoracic Sympathetic Trunk 275
Upper Thoracic Endoscopic Sympathectomy 276
Percutaneous Lumbar Sympathectomy with Phenol 276
Method 277
Complications 277
Results 277
Cardiac Sympathectomy 278
Sympathectomy of Abdominal Viscera 279
Open Excisions 279
Chemical Sympathectomy of Celiac Plexus and Splanchnic Nerves 280
Conclusions 281

Part II. Electrical Stimulation of Pain-Suppressive Systems 283
Introduction 84

Chapter 22. Peripheral Nerve Stimulation 286
Historical Note 286
Mechanism of Pain Relief by Peripheral Nerve Stimulation 286
Surgical Technique 288
Results 290
Complications 290
Stimulation of the Ganglion of Gasser 290
Conclusions 292
Legend for the Cover Illustration

Munch described the motive of the painting appearing on the cover in the following words: “One evening I was walking along a path - on one side lay the city and below me the fjord. I was tired and ill - I stopped and looked out across the fjord - the sun was setting - the clouds were dyed red like blood. I felt a scream pass through nature; it seemed to me that I could bear the scream. I painted this picture - painted the clouds as real blood. - The colors were screaming. - This became the picture The Scream from the Frieze of Life.”

Preface

It is now almost two decades (1969) since White and Sweet wrote their second substantial treatise on pain entitled ‘Pain and the Neurosurgeon’. Since that time, surgical techniques have changed. Previous open operations have been supplemented by the percutaneous introduction of electrodes under very brief general or local anesthesia with the opportunity of verifying by physiological means the nervous structures one aims to destroy. In addition the operating microscope may have disclosed subtle compressive lesions on cranial nerves which may give rise to paroxysmal neuralgias and possibly can be treated by removing the compression. But perhaps more importantly, since that time the evidence that a complex system of pain suppressor mechanisms exists has presented a completely new vista of pain control by activation of these mechanisms. Included are both electrical stimulation at specific sites and introduction of chemicals to bind to either opiate or many nonopiate types of pain suppressor receptors. Clinical utilization of these new concepts is still in its early stages. Neurosurgeons have known since Foerster’s comprehensive studies...
that pain often seems to ‘run in front of the knife’, i.e. the nervous system possesses a remarkable capacity, following destructive procedures on it, to return towards the status quo ante, and to develop little-used or new mechanisms either to cause recurrence of the original pain or to replace it by other types of pain. Although often appearing at a slower pace than the analogous development of tolerance to chemical analgesics, it is clear that both physician and surgeon are confronted by this major problem in pain control.

The new developments include awareness of both pain suppressor and pain inducer pathways, of a bewildering variety of normal chemical mediators at the synapses in these pathways, and the pharmacology of the less readily destroyed analogs of the pain suppressors and antagonists of the pain inducers. This knowledge, though increasing, is still in a state of flux very difficult for the clinician to analyze and apply.

This book is written primarily for neurosurgeons who seek but do not yet have a special expertise in the neurosurgical treatment of pain. Its second intention is to provide all students and therapists of pain with a survey of clinical observations re the effects on chronic pain of destroying, stimulating electrically, and applying drugs to specific parts of the human nervous system. Within the limits of the pages prescribed by the publisher this second objective can be met only incompletely.

For hundreds of hours spent in follow-up studies, collation of data, literature searches and typing of manuscripts, we thank our research assistants, Mrs. Monique Heeren, Deborah Wallace and Linda Berard.

May 1988 Jan Gybels and William Sweet