This publication is listed in bibliographic services, including Current Contents and Index Medicus.

Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

AU rights reserved
No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

© Copyright 1990 by S. Karger AG, P.O. Box, CH-4009 Basel (Switzerland) Printed in Switzerland by Thür AG Offsetdruck, Pratteln ISBN 3-8055-5020-0

Contents

Preface DC
Otoacoustic Emissions: An Overview
R. Probst, Basel 1
1. Introduction 1
2. Definition and General Remarks 2
2.1. Classes of Otoacoustic Emissions 2
2.2. Cochlear Origin 4
2.2.1. Noise Exposure 4
2.2.2. Suppression 4
2.2.3. Ototoxic Drugs 4
2.2.4. Hypoxia 6
2.2.5. Hearing Loss 6
2.2.6. Evidence against Neural or Middle Ear Origin 6
2.3. The Middle Ear Factor 8
2.4. Acoustic Probes 9
3. Spontaneous Otoacoustic Emissions 10
3.1. Methods of Recording 11
3.2. Findings in Normal Human Subjects 12
3.2.1. Incidence 12
3.2.2. Gender and Age Differences 14
3.2.3. Amplitude 15
3.2.4. Frequency 15
3.2.5. Relations between Spontaneous Emissions 16
6.2.2. Amplitude 54
6.2.3. Threshold and Input-Output Function 55
6.2.4. Latency 55
6.2.5. External Influences 56
6.2.6. Relation to Other Otoacoustic Emissions 56
6.3. Findings in Patients 57
6.4. Findings in Animals 58
6.4.1. Amplitude 59
6.4.2. Input-Output Function 60
6.4.3. Latency 61
6.4.4. Post-Mortem Properties 62
6.4.5. Influence of Efferent Stimulation 63
6.4.6. Suppression 63
6.4.7. Noise Exposure 64
6.4.8. Influence of Drugs 66
6.4.9. Relation to Outer Hair Cells 67
7. Generation of Otoacoustic Emissions and Clinical Implications 67
7.1. Place- and Wave-Fixed Otoacoustic Emissions 68
7.1.1. Implications for Spontaneous Emissions 69
7.1.2. Implications for Transiently Evoked Emissions 70
7.1.3. Implications for Stimulus-Frequency Emissions 71
7.1.4. Implications for Distortion Product Emissions 72
7.2. Generation Mechanisms 73
7.2.1. Basic Mechanisms 73
7.2.2. Place-Fixed Emissions 74
7.2.3. Wave-Fixed Emissions 77
7.3. Biological Significance of Otoacoustic Emissions 79
References 80

Ototoxicity of Loop Diuretics. Morphological and Electrophysiological Examinations in Animal Experiments
Christian Peter Hommerich, Düsseldorf 92

Introduction 92
1. Material and Methods 98
2.1. Experimental Animals and Preparation 98
2.2. Loop Diuretics 99
2.3. Tissue Preparation 99
2.4. Measurement of the Endolymphatic Potential, the Potassium and Sodium Concentrations and
Chloride Concentration 101
. Results 105
3.1. Morphological Findings in the Cochlea of the Guinea Pig Following Application of Ethacrynic Acid 105
3.2. DC Potential Potassium and sodium Concentration in the Cochlea of the Guinea Pig Following Application of Ethacrynic Acid 105
3.3. Morphological Findings in the Ampulla and the Semicircular Canal of the Guinea Pig Following Application of Ethacrynic Acid 107
3.4. Endolymphatic Potential and Potassium and Sodium Concentrations in the Semicircular Canal of the Guinea Pig Following Application of Ethacrynic Acid 109
3.5. Scanning Electron Microscope Examinations of the Normal Structure of the Pigeon’s Ampulla 111
3.6. Morphological Findings in the Ampulla of the Pigeon Following Application of Ethacrynic Acid 113
3.7. Endolymphatic Potential and Potassium Concentration in the Ampulla of the Pigeon Following Application of Ethacrynic Acid 120
3.8. Scanning Electron Microscope Examinations of the Normal Structure of the Pigeon’s Cochlea 122
3.9. Morphological Findings in the Pigeon’s Cochlea Following Application of Ethacrynic Acid 123
3.10. DC Potential and Potassium Concentration in the Cochlea of the Pigeon Following Application of Ethacrynic Acid 126
3.11. Dose-Dependent Effect of Ethacrynic Acid on the DC Potential and the Potassium Concentration in the Cochlea of the Pigeon 129
3.12. Chloride Concentration in the Cochlear Endolymph of the Guinea Pig Following Application of Ethacrynic Acid 133
3.13. DC Potential and Potassium Concentration in the Cochlea of the Guinea Pig Following Application of 1-Ozolinon 134

Contents VIII

3.15. DC Potential in the Cochlea of the Guinea Pig Following Application of d-Ozolinon 137
3.16. The Combined Effect of d-Ozolinon and Ethacrynic Acid on the DC Potential in the Cochlea of the Guinea Pig 138
4. Discussion 139
5. Conclusions 155
6. Acknowledgements 156
References 157
Subject Index 165
Inner ear sensitivity to toxic side effects of various drugs has been known for more than a century. According to J. E. Hawkins, ototoxicity is “the tendency of certain therapeutic agents and other chemical substances to cause functional impairment and cellular degeneration of the tissues of the inner ear, and especially of the end organs and neurons of the cochlear and vestibular divisions of the eighth cranial nerve”.

The ototoxic effect of aminoglycosides has been studied very carefully since it became evident, shortly after its use in humans (1945), that it could produce deafness and balance disorders. Heretofore little was known about the ototoxic effects of “loop inhibiting” diuretics such as ethacrynic acid and furosemide. Since the first published report about immediate but reversible sensorineural hearing loss combined with vestibular symptoms following intravenous administration of ethacrynic acid, many years passed until the underlying pathophysiologic mechanisms were clarified to some extent. Fundamental questions still remain open, but C. Hommerich makes a successful attempt to present an overview on the current understanding of ototoxicity resulting from use of loop diuretics and to clarify prevailing concepts of endolymph production in the cochlea.

New aspects of cochlear mechanics followed the discovery by Kemp that the cochlea not only receives sounds, but also produces acoustic energy referred to as acoustic emissions. R. Probst presents an overview on this finding based on the results of personal experimental studies in animals and humans and discusses the biological significance of this phenomenon. Moreover, he emphasizes the clinical significance of otoacoustic emissions which now permit examination and monitoring of basic cochlear mechanisms in an objective and noninvasive way.

C. R. Pfaltz, Basel