Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selections and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when recommended agent is a new and/or infrequent!), employed drug.

All rights reserved.
No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

Copyright 1990 by S. Karger AG, P.O. Box, CH-4009 Basel (Switzerland)
Printed in West-Germany by Bonitas-Bauer, 8700 Wrzburg
ISBN 3-8055-5025-1

Contents

Preface XI

Development of the Model

Cohen, A.M., (Jerusalem): Background 1
Dietary Studies 2
Development of the Model 5
Genetic Aspects of the Cohen Diabetic Rat Model

Vardi, R. (Jerusalem): Introduction 11
Mode of Selection 12
The Progression of Selection with Successive Generations 12
Effect of Diet 15
Hereditary Characteristics and Sex Differences
Cross-Mating 16
Back-Crossing 18
Birth Order Effect 20
Comparison with Other Type II Diabetes Models 21
Resemblance to Human Adult Onset Type II Diabetes 22
Summary 22
References 23

Biochemical and Enzymatic Changes in the Cohen Diabetic Rat

Madar, Z. (Rehovot): Introduction 26
Changes in Enzymes Activity in Diabetes 26

Contents VI

Contribution of Nutritional Factors to the Development of Diabetes 27
Materials and Methods
Insulin-Binding Assay 28
Pyruvate Dehydrogenase and Glycogen Synthase Determination 28
Pyruvate Dehydrogenase Assay 28
Glycogen Synthase Assay 29
Results and Discussion
Biochemical Blood Parameters and Tissue Enzymatic Changes 29
Changes in Biochemical Blood Parameters 29
Changes in Glycogen Content in the Liver 30
Changes in Enzymatic Activity in Liver, Adipose Tissue and Muscle 31
PHD and GS Activity 32
Copper as a Limiting Dietary Factor for the Development of Diabetes in the Cohen Diabetic Rat 33
Insulin Sensitivity and Insulin Receptors in the Cohen Diabetic Rat 34
Changes in Enzymatic Activities in Other Diabetic Type II Animal Models
Changes of Enzymatic Activity in ob / ob Mice 38
Alterations in Enzymes Activity in fa/fa Rats 39
Changes in Enzymes Activity in the Sand Rat 39
Summary 41
References 41

The Insulin Response in the Cohen Diabetic Rat

Cohen, A. M. (Jerusalem); Wiegand, S., Kaiser, R., Federlin, K. (Gieen):
Insulin Release by the Cohen Prediabetic Rat 44
Insulin Release by the Cohen Diabetic Rat 46
In vivo 46
In Perfused Pancreas 47
In Isolated Islets of Langerhans 49
The Nature of the Defect in Insulin Release 50
Insulin Release following Intravenous Glucose 50
Insulin Release following Intravenous Arginine or Aminophylline Stimulation 51
Summary 53
References 53

The Pathology of the Cohen Diabetic Rat

Rosenmann, E.; Cohen, A.M. (Jerusalem):
Introduction 54
The Kidneys 54
The Cardiovascular System 65
The Liver 65

Contents VII
The Adrenal Glands 66
The Testes 68
The Pancreas
Exocrine Pancreas 68
Endocrine Pancreas 71
References 73

Pathology of the Retina in the Cohen Diabetic Rat

Yanko L.; Rosenmann, E.; Cohen, A.M. (Jerusalem): Introduction 76
Vascular Changes in the Retinal Vessels as Observed in Digested Flat Preparation 78
Neural Retinal Changes 80
Control of Blood Glucose Levels and Development of Retinal Microangiopathy 81
Correlation Study on the Occurrence of Retinopathy and Nephropathy 81
Discussion 82
Summary 83
References 84

Osteopathy and Arthropathy

Silberberg, R. (Jerusalem): Introduction 87
Skeletal Changes in the Cohen Diabetic Rat 88
Skeletal Pathology in Experimental Diabetes in Adult Animals Other than Cohen Rats 92
Bone Deficit 92
Osteosclerosis 93
Effects of Experimental Diabetes on Joint Structures 94
Conclusions 95
References 97

Emryonic Development in Cohen Diabetic Rats:
A Comparison with Human and Animal Studies

Ornoy, A.; Zusmann, I. (Jerusalem): Introduction 101
Experimental in vivo Animal Studies
Congenital Malformations in the Cohen Diabetic Rat 102
Congenital Malformations in Other Diabetic Models 104
Comparison of Congenital Malformations in Humans 105
Diabetic Fetal Death and Resorption 107
Diabetes and Growth Retardation 107
Placental Changes in Diabetic Pregnancy and in Cohen Diabetic Rats 109

Contents VIII

Experimental in vitro Studies 111
Summary 115
References 116

Effect of Polyols on the Development of Diabetes in the Cohen Diabetic Rat

Effect of Feeding Polyols 124
Effect of Fructose 125
Effect of Sorbitol 127
Effect of Sex Hormones on Diabetic Microangiopathy (Diffuse Glomerulosclerosis and Diabetic Retinopathy) in the Cohen Diabetic Rat

Effect of Estradiol Treatment
Effect of Testosterone Treatment
Effect of Estrogen-Antagonist Tamoxifen Treatment
Discussion
Summary
References

Effect of Trace Elements on the Development of Diabetes in the Cohen Diabetic Rat

Effect of Trace Elements on the Development of Diabetes
Effect on Blood Glucose
Effect on Insulin Response
Insulin Response to Oral Glucose Load
Pancreas Perfusion
Effect of Insulin Stimulation by Intravenous Glucose, Argine or Aminophylline
Glucose Stimulation
Arginine Stimulation
Aminophylline Stimulation
The Site of Action of Copper on Glucose Incorporation
Effect of Copper on Insulin Receptors
Insulin Resistance

Contents IX

Intestinal Absorption of Glucose
Copper Content of the Liver
Urinary Excretion of Copper
Effect of Copper Supplement on the Development of Microangiopathy
Summary
References
Effect of Treatment on the Cohen Diabetic Rat

Effect of Acute Treatment with Insulin or Sulfonylurea 177
Effect of Long-Term Treatment with Glibomuride
Blood Glucose and Plasma Insulin 178
Blood Lipids 179
Microangiopathy 179
Comment 181
Summary 182
References 182

Islet Transplantation in the Cohen Diabetic Rat

Introduction 185
Material and Methods 186
Animals 186
Islet Isolation 186
Study Design
Metabolic Studies 186
Morphological Studies 186
Results 187
Metabolic Effects of Islet Transplantation 187
Body Weight 187
Blood Glucose 188
Glycosuria 188
Glucose Tolerance 188
Glycosylated Hemoglobin 190
Serum Insulin Levels 190
Serum Glucagon 190
Morphological Studies
Renal Lesions 192
Retinal Changes 194
Discussion 197
Summary 199
References 199

Preface
Since von Mehring and Minkowski conducted their famous studies in dogs just 100 years ago in 1889 and discovered that the removal of the pancreas resulted in diabetes mellitus, many other animal models have been used to try and reach a better understanding of the disease in humans. This holds true mainly for type I diabetes, although the great majority of human diabetics suffer from type II of the disease. Because of its continuing increase worldwide and the fact that its pathophysiology is in many respects still unknown, animal models of type II diabetes may still be of great importance for future research in diabetology.

Therefore, the long-standing work of A. M. Cohen using nutritional and genetic mechanisms for developing a rat strain with the characteristics of type II diabetes is of great scientific interest for several reasons. The animal model described is based on the unique epidemiological and clinical observations which were made in some Jewish communities with people who had immigrated to Israel from a completely different environment, namely Kurdistan and Yemen. Upon their arrival the prevalence of Diabetes mellitus was 0.06 and 0.0 % in the two populations respectively. In Israel they joined Jewish settlers of the same ethnic groups who had already lived for more than 25 years in this part of the Western world, were therefore integrated into its customs and daily life, and who exhibited a prevalence towards diabetes of 2 - 3 %.

This fascinating historical background, which is described in detail by Professor Cohen in the first chapter of this volume, created the idea of introducing an animal model which would allow the development of Diabetes mellitus on the basis of endogeneous (genetic) and environmental (nutritional) factors to be studied. The similarity of this model to human type II diabetes is the aspect which was the most intriguing and which raised so much interest in the past as well as providing an impetus for further studies. On the one hand, it allows an examination of the various factors from the point of view of genetics, and on the other hand the role of environmental factors such as food composition and the importance of trace elements could be assessed. Furthermore, the model gives a deeper insight into glyconeogenesis, lipogenesis, hyperinsulinemia - which later turns into hypoinsulinemia -, insulin resistance, and insulin receptor function, etc. in a way which is not possible in human beings. In addition, the Cohen diabetic rat is a very suitable model for obtaining more exact information on the pathophysiology and histopathogenesis of late complications involving the kidneys, eyes, nerves, testes, and the skeletal system, etc., since these diabetic changes eventually develop in the animals after manifestation.
of the disease and resemble the human lesions very closely. Finally, therapeutic interventions are discussed in this book ranging from the administration of insulin or sulfonylureas to glycosidase inhibitors and even to the transplantation of islets. The latter treatment may provide an insight into the function of the endocrine pancreas in this model and may help to understand not only the role of this gland but also of the peripheral tissues in type II diabetes. It is A.M. Cohens great merit, that together with his colleagues at the Hebrew University Hadassah Medical School, he has pertinaciously elaborated the numerous biochemical, pathophysiological, morphological and functional characteristics of this animal type of diabetes, which not only is already helping us towards a better understanding of human type II diabetes today, but has also provided us with a firm basis for future studies. Therefore, we hope this book will not only be of interest to those colleagues interested in experimental and spontaneous diabetes in animals, but that it will also encourage younger scientists to begin their own work in search of better answers to the many open questions regarding diabetes mellitus.

K. Federlin