Basic Research on Lung Surfactant

Progress in
Respiration Research

Vol. 25

Series Editor
H. Herzog, Basel

Karger

Basel · München · Paris · London New York New Delhi Bangkok Singapore Tokyo Sydney

3rd International Symposium on Basic Research on Lung Surfactant,
Marburg, September 12-14, 1988

Basic Research on
Lung Surfactant

Volume Editors
P. von Wiehert, Marburg
B. Müller, Marburg

112 figures and 45 tables, 1990

Karger


Progress in Respiration Research

Library of Congress Cataloging-in-Publication Data
International Symposium on Basic Research on Lung Surfactant
(3rd: 1988: Marburg, Germany)
Basic research on lung surfactant/
3rd International Symposium on Basic Research on Lung Surfactant, Marburg,
September 12-14, 1988: volume editors, P. von Wiehert, . Müller,
p. cm. - (Progress in respiration research; vol. 25)
Includes bibliographical references.
I. Pulmonary surfactant - Congresses. I. Wiehert, P. von (Peter)
II. Müller, . (Bernd), 1952-. III. Title. IV. Series.
Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All rights reserved.
No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

© Copyright 1990 by S. Karger AG, P.O. Box, CH- 4009 Basel (Switzerland)
Printed in Switzerland by Thür AG Offsetdruck, Prattein
ISBN 3-8055-5030-8

Contents

Foreword IX

Structure and Polymorphism of Surfactant Related Proteins
Whitsett, J.A.; Weaver, T.E.; Glasser, S.W.; Korfhagen, T.R. (Cincinnati, Ohio): Regulation of Surfactant Protein Expression 1
Fisher, J.H.; Emrie, P.A.; Shannon, J.M.; Mason, R.J. (Denver, Colo.): Chromosomal Location of Human Surfactant Protein Genes and a Comparative Study of Surfactant Protein Structure 8

Protein-Lipid-Interactions in Surfactant
King, R.J. (San Antonio, Tex.): Comparative Properties of Reassembly Lipoproteins Formed with Surfactant Proteins A and C 36
Simatos, G.A.; Morrow, M.R.; Forward, K.B.; Keough, K.M.W. (St. John's, Nfld.): Pulmonary Surfactant Protein in Bilayers of Dimyristoyl Phosphatidylcholine 48
Possmayer, F.; Yu, S.-H. (London, Ont.): Role of the Low Molecular Weight Proteins in Pulmonary Surfactant 54
Haagsman, H.P. (Utrecht); Hawgood, S. (San Francisco, Calif.): Special Qualities of Surfactant Apoproteins 64
Hawgood, S. (San Francisco, Calif.): Structure Function: Correlation in Reassembled Surfactant 72
Williams, M.C.; Dobbs, L.G. (San Francisco, Calif.): Endocytosis in Alveolar Type II Cells in vivo and in vitro 81

Contents VI

Surfactant Synthesis and Secretion
Batenburg, J.J.; den Breejen, J.N.; Geelen, M.J.H.; Bijleveld, C; van Golde, L.M.G. (Utrecht): Phosphatidylcholine Synthesis in Type II Cells and Regulation of the Fatty Acid Supply 96
Bourbon, J.; Doucet, E.; Rieutort, M.; Marin, L. (Ivry): Surfactant and Non-Surfactant Phosphatidylcholine Biosynthesis in Cultivated Fetal Rat Alveolar Type II Cells: Effect of Growth Factors 104
Smith, B.T.; Post, M. (Toronto, Ont.): Hormonal Control of Surfactant Synthesis 109
Dobbs, L.G.; Wirtz, H.R.W.; Pian, M.S. (San Francisco, Calif.): Regulation of Surfactant Secretion in Cultured Type II Cells 115
Bernhard, W.; Müller, ;; von Wiehert, P. (Marburg): Effect of Beta-Mimetic Drugs on Phospholipid Synthesis in the Isolated Lung 122
Rooney, S.A. (New Haven, Conn.): Type II Cell Purinoceptors and Surfactant Secretion 127

Intraalveolar Surfactant Metabolism and Recycling
Wright, J.R.; Young, S.L.; Stevens, P.A.; Clements, J.A. (San Francisco, Calif.): Intraalveolar Metabolism of Lung Surfactant. Role of SP-A in Regulating Surfactant Pool Size 136
Jobe, A. (Torrance, Calif.): Surfactant Catabolism and Recycling in the Perinatal Period 144
Bachofen, ;; Schürch, S.; Urbinelli, M. (Berne/Calgary, Alta.): Surfactant and Alveolar Micromechanics 158
Tchoreloff, P.; Denizot, B.; Proust, J.-E.; Puisieux, F. (Châtenay-Malabry): Induced
Structures Obtained from Surface Film Compression of Natural Lung Surfactant and Synthetic Phospholipids 168
Ladanyi, E. (Göttingen); Miller, LR.; Popovits-Biro, R.; Marikovsky, Y. (Israel); von Wiehert, P.; Müller, . (Marburg); Stalder, . (Göttingen): Molecular Structure of the Extracellular Surface Layer of the Human Lung Surfactant. An Electro-chemical and Immuno-electron Microscopic Study on Langmuir-Blodgett Type Films 176
Schürch, S. (Calgary, Alta.); Bachofen, H. (Berne); Goerke, J. (San Francisco, Calif.): Alveolar Surface Tension: What Kind of Biophysical Measurements Should Be Done? 181

Actual Fields of Research
Strohmaier, W.; Schlag, G. (Vienna): Comparison of Different Types of Exogenous Surfactant in an Experimental Aspiration Trauma 200

Contents VII
Sherman, M.P.; Campbell, L.A. (Los Angeles, Calif.); Merritt, T.A. (San Diego, Calif.); Shapiro, D.L. (Rochester, N.Y.); Long, W.A. (Triangle Park, N.C.);
Gunkel, J.H. (Columbus, Ohio): The Infected Preterm Rabbit Lung. A Model to Test the Effect of Surfactant Replacement on Lung Host Defenses 204
Phelps, D.S.; Floras, J. (Boston, Mass.): Effects of in vivo Dexamethasone Administration on Surfactant Protein Expression in the Rat 224
Corbet, ; Voelker, R.; Murphy, F. (Houston, Tex.): Effect of Calcium, and Lanthanum and Other Calcium Antagonists on the Lung Phospholipid Secretion Produced by Lung Distension in Newborn Rabbits 229

Application of Basic Research Data in Surfactant Therapy
Robertson, B.; Curstedt, T.; Johansson, J.; Jörnvall, H. (Stockholm); Kobayashi, T.
(Kanazawa): Structural and Functional Characterization of Porcine Surfactant Isolated by Liquid-Gel Chromatography 237

Obladen, M.; Schwarz, H.; Kattner, .; Stevens, P. (Berlin/Tübingen): Results with Artificial Surfactant: Aspects of Morphological Appearance, Surface Activity, and in vivo Activity of Artificial Surfactant 247

Hill, CM.; Brown, B.D.; Morley, C.J.; Davis, J.A. (Cambridge); Barson, A.J. (Manchester): Surfactant and Lung Hypoplasia 253

Hallman, M. (Helsinki); Allen Merritt, T. (San Diego, Calif); Akino, T. (Sapporo); Strayer, D. (Houston, Tex.); Arjomaa, P. (Helsinki): Is It Possible to Enhance the Therapeutic Effect of Exogenous Natural Surfactant? 256

Enhorning, G. (Buffalo, N.Y.): Surfactant Research of Interest to the Clinician 265

Posters


Emrie, P.A.; Shannon, J.M.; Mason, R.J.; Fisher, J.H. (Denver, Colo.): cDNA Deduced Amino Sequence of the Rat Hydrophobic Surfactant Associated Protein SP-B 279

Wirtz, H.R.W.; Dobbs, L.G. (San Francisco, Calif): Stretch-Induced Secretion of Phosphatidylcholine from Rat Alveolar Type II Cells: Inhibition by Surfactant Protein-A 285

Contents VIII

Rolland, G.; Bourbon, J.; Valenza, C; Dufour, M.-E.; Marin, L.; Rieutort, M. (Ivry-sur-Seine): Comparison of Surfactant Biosynthesis in Fetal Rat Alveolar Type II Cells Grown in a Chemically Defined Medium or in the Presence of Serum 288

Holm, B.A.; Matalon, S. (Buffalo, N.Y./Birmingham, Ala.): Effects of Hyperoxia on Type II Cell Surfactant Synthesis 291

Albermann, .; Bamberger, U. (Ulm); Ziegler, H.; Disse, B.; Pohlandt, F. (Biberach/Ulm): Immunohistochemical Verfication of Surfactant Replacement in Immature Rabbit Fetuses 294

Ikegami, M.; Jobe, A. (Torrance, Calif.): Effect of Maternal Corticosteroid Treatments on the Relationship between Surfactant Pool Size and Compliance in Preterm Ventilated Rabbits 298

One of the most exciting developments in lung research in the last three decades has been the increasing appreciation of the metabolic activities of the lung. In particular, the link between biosynthetic and secretory processes in lung cells and respiratory function exemplified by the surfactant system has stimulated a large body of scientific work which is already finding some clinical application. The lung that lacks surfactant does not work very well. This phenomenon was first recognized in premature infants as the respiratory distress syndrome, or hyaline membrane disease, but it is now becoming clear that other lung diseases, among them acute pulmonary failure in adults, may...
involve dysfunction of the surfactant system. Starting from purely scientific beginnings, surfactant research has broadened to include clinical investigations by pediatricians, internists, anesthesiologists, surgeons, and pathologists who hope to evolve new forms of therapy for their seriously ill patients. It may be hazardous, however, to attempt to translate research findings into clinical practice, if the scientific basis is not solid or if therapeutic aspirations too greatly exceed realistic expectations. This difficulty particularly affects surfactant research. Many unanswered questions plague our understanding of events in the alveolar regions of the lungs, especially in the presence of disease processes. It is reasonable, therefore, to go back to basic issues in order to strengthen the rationale for new therapies. This idea motivated the organization of the Third International Symposium on Basic Research on Lung Surfactant, whose proceedings are summarized in this volume.

At present, surfactant research is an especially exciting field. On the one hand, the surfactant system, Janus-like, links pulmonary function and lung biology just as mechanics and intermediary metabolism were long ago linked in muscle contraction. On the other hand, new knowledge about the generation, transport and regeneration of surfactant components has fundamentally changed our view of the lung and opened a field of research that leaves traditional respiratory physiology far behind, not withstanding the dominant position of gas exchange efficiency as the gold standard for lung function. Nonetheless, investigations of lung hormones, of clearance of mediators in the pulmonary circulation, and of many other functions, sprang from the belated recognition that the lung has an active metabolism. The body as a whole depends on this group of functions only slightly less acutely than on efficient gas exchange.

It is now well known that lung surfactant contains both phospholipids and specific proteins. The phospholipid components have been studied for years, and their metabolism and properties in normal and diseased lungs are fairly well described. The surfactant proteins, on the contrary, have only recently come under close scrutiny, despite evidence from the earliest experiments that surfactant function is protein dependent. Progress in the methods of protein chemistry, immunology and molecular biology has greatly accelerated study of these protein components. Information is now accumulating at a rapid rate about the detailed structure of the proteins, about their metabolism, about their interactions with surfactant lipids, about their effects on alveolar cells, and about their genetic variations. Naturally, the more detailed our understanding becomes, the more new
questions arise; and we can see now the need for much further clarification of the physiological and pathological roles of the surfactant proteins. How these roles are disturbed in lung diseases is not clear at present. Although enthusiasm runs high for innovative therapy based on current perceptions of what these proteins do, we should recognize that our knowledge about them is still limited.

How many functions does lung surfactant have? Clearly, it lowers alveolar surface tension, but may it promote airway clearance of toxins or opsonize micro-organisms? How else may it modulate alveolar function and architecture? Does it play a significant role in small airways? How is surfactant turnover regulated in normal and pathological states? Do surfactant components counteract, or perhaps promote, certain disease processes? Can surfactant components be used as drugs or to target other drugs to alveolar or bronchiolar cells? These and many other questions about the surfactant system certainly lack answers at present. To speak more precisely, we are unable to answer these questions because we do not have adequate basic knowledge about the system. Therefore, fundamental research on lung surfactant is critical, not only for immediate clinical application but also for the longer range goal of more completely understanding pulmonary function in normal and pathological conditions. Towards that end this record of the proceedings of the Third International Symposium on Basic Research on Lung Surfactant not only summarizes recent progress but also points out some gaps in current knowledge that need further attention.

The organizers as well as the participants of the symposium express their thanks for generous support to many institutions and persons. The Deutsche Forschungsgemeinschaft supports the meeting by covering most of the expenses. The help of the president of the Philipps University of Marburg as well as the Dean of the Faculty of Medicine of the Philipps University is gratefully acknowledged. Support comes also from the Ministry of Science of Hessen and international companies as Byk-Gulden, Konstanz, Calbiochem, San Francisco, Calif., Dr. Karl Thomae, Biberach, Deutsche Wellcome, Burgwedel, Merck, Darmstadt, Hoechst, Frankfurt and Boehringer, Ingelheim. A particular support by Byk-Gulden, Konstanz, and Dr. Karl Thomae, Biberach, makes the publishing of the records of the symposium possible. The editors of this volume and the authors of the many different papers wish to stimulate many scientists in a fascinating, growing and still expanding field of research.
P. v. Wiehert, Marburg
J. A. Clements, San Francisco, Calif.