Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All rights reserved.
No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

©

Copyright 1990 by S. Karger AG, P.O. Box, CH-4009 Basel (Switzerland)
ISBN 3-8055-5091-X

Contents

Acknowledgements VIII
Foreword IX

A.N. Richards Lecture

Botting, R.; Vane, J.R. (London): The Role of the Endothelium in Vascular Homeostasis 1

I. Endothelium-Derived Relaxing Factors and Nitric Oxide

Rubanyi, G.M.; Greenberg, S.S. (Cedar Knolls, N.J.); Wilcox, D.E. (Hanover, N.H.): Endothelium-Derived Relaxing Factor Cannot Be Identified as Free Nitric Oxide by Electron Paramagnetic Resonance Spectroscopy 32
Loeb, A.L.; Peach, M.J. (Charlottesville, Va.): Endothelium-Derived Relaxing Factor Can Be Distinguished from Nitric Oxide 39
Bing, R.J.; Menon, N. (Pasadena, Calif.): Vascular Relaxation by Lysophosphatidylcholine - Relationship to Nitric Oxide Production 46

II. The Arginine : Nitric Oxide Pathway

Ignarro, L.J.; Gold, M.E. (Los Angeles, Calif.): Alteration of Endothelium-Dependent Arterial Relaxation by Arginine Analogs and Arginine Depletion 64

Contents VI

Schmidt, H.H.H.W.; Böhme, . (Berlin): Precursor Role of L-Arginine for Nitric Oxide-Containing Compounds in Endothelial Cells 85
Katusic, Z.S.; Vanhoutte, P.M. (Rochester, Minn.): Endothelium-Dependent Contractions to N°-Monomethyl-L-Arginine in Canine Basilar Artery 95

III. Signal Transduction Mechanisms

Bény, J.-L. (Geneva): Homo- and Hetercellular Dye and Electrical Coupling between Endothelial and Smooth Muscle Cells in Pig Coronary Artery 117
Laskey, R.E.; Adams, D.J. (Miami, Fla.); Johns, .; Rubanyi, G.M. (Cedar Knolls, N.J.); van Breemen, C. (Miami, Fla.): Regulation of [Ca2+] in Endocardial Cells by Membrane Potential 128
Flavahan, N.A.; Vanhoutte, P.M. (Rochester, Minn.): Regulation of Endothelium-Dependent Relaxation by Protein Kinase C: Possible Inhibition of a Pertussis Toxin-Sensitive G Protein 136
Rosenblum, W.I. (Richmond, Va.): Evidence for a Role of Endothelial Cyclic GMP in Synthesis/Release of an Endothelium-Derived Relaxing Factor 143

IV. Effects of Endothelium-Derived Relaxing Factors on Vascular Smooth Muscle
Kovâch, A.G.B.; Dora, E.; Szabô, Cs.; Faragô, M.; Kauser, K.; Gancsurin, V.; Horvâth, I. (Budapest): Role of Calcium in Contractile and Endothelium-Dependent Dilatory Responses of Cerebral, Mesenteric and Coronary Arteries 174
Tsuiji, T. (Matsumoto); Abrol, R.P.; Cook, D.A. (Edmonton, Alta.): Actions of Bradykinin on Canine Basilar Arteries 191
Luscher, T.F. (Basel): Endothelium-Dependent Responses in Human Arteries and Veins 198
Cohen, R.A.; Tesfamariam, B.; Weisbrod, R.M. (Boston, Mass.): Endothelium Inhibits Adrenergic Neurotransmission 206

Contents VII

Kukovetz, W.R.; Holzmann, S. (Graz): Tolerance to Nitric Oxide in Bovine Coronary Arteries 213

V. Platelets and Polymorphonuclear Leukocytes
Ohlstein, E.H.; Nichols, A.J. (King of Prussia, Pa.): Rabbit Polymorphonuclear Neutrophils Elicit Endothelium-Dependent Contraction in Rabbit Aortas 228
Cantor, E.H.; Ho, E.H.; Parker Botelho, L.H.; Lumma, W.C.; Rubanyi, G.M. (Cedar Knolls, N.J.): Effect of Nitric Oxide, SIN-1, Adenosine and Iloprost on Human Polymorphonuclear Leukocytes 237
Cooke, J.P.; Stamler, J.; Andon, N.A.; Davies, P.F.; Mendelsohn, M.E.; Loscalzo, J. (Boston, Mass.): Flow-Mediated Endothelium-Dependent Effects on Platelet and Vascular Reactivity 244
Humphries, R.G.; Tomlinson, W.; O’Connor, S.E.; Leff, P. (Loughborough): Endothelium-Derived Relaxing Factor-Mediated Inhibition of Collagen-Induced Platelet Aggregation in vivo 254

VI. Prostacyclin and Iloprost
Stock, G. (Berlin): Iloprost: A Stable Analogue of Prostacyclin 260
The second part of these proceedings appears under the title ‘Endothelium-Derived Contracting Factors’.

Acknowledgements

The success of the International Symposium of Endothelium-Derived Vasoactive Factors and the publishing of this book were made possible by the support and efforts of many organizations and individuals.

We would like to thank the professional staff of International Business Communications, Inc., for the highly competent organization of the symposium with special thanks to Ms. Kim Todd, who was the driving force behind the organizational effort.

We wish to acknowledge the valuable sponsorship of the Physiological Society of Philadelphia and the generous support of Schering AG, West Berlin, and Berlex Laboratories, Inc., Cedar Knolls, N.J. (USA).

The outstanding contribution of the Scientific Advisory Board in preparing the program and the excellent and exciting presentations and chapter contributions by the speakers and chairpersons to the symposium and to this book are gratefully appreciated.

We would like to express our gratitude to Mrs. Susan Packie for her help in the organization of the symposium and editing of this book.

Finally, the editors would like to thank the staff of S. Karger, Basel.
The discovery that endothelial cells play a pivotal role in the relaxation evoked by acetylcholine in isolated rabbit aortas [Furchgott and Zawadzki, Nature 299: 373, (1980)], has initiated a true revolution in the world of cardiovascular sciences. This finding, and its extension to other arteries, and other vasodilator agents has forced the cardiovascular physiologists, pharmacologists and even pathologists to rethink the ways by which local vascular tone and the interaction between the platelets and the blood vessel wall are regulated. Ten years later, one is forced to admit that the importance of the discovery by Dr. Furchgott equals that of the recognition of the role played by sympathetic nerves in controlling vascular tone.

It has become impossible to envisage the local regulation of blood flow, whether due to changes in physical conditions, to autacoids produced in the tissues, to circulating vasoactive hormones, or to platelet products, without implicating endothelium-dependent changes in blood vessel diameter. In the first paper describing the phenomenon of endothelium-dependent relaxation, convincing evidence has already been presented showing that the role of the endothelial cells could not be explained by cell-to-cell conduction of signals, but had to relay on the release of a vasoactive substance. The latter was termed ‘endothelium-dependent relaxing factor’ and readily abbreviated EDRF. Although the abbreviation sounded scientific, it masked a lack of knowledge for many years. EDRF appeared to be very labile, and this evanescent nature considerably delayed its proper identification. However, considerable progress has been made in that regard. It now appears that the major EDRF represents nothing else but nitric oxide or a labile nitroso compound, the terminal activator of guanylate cyclase released by exogenous nitrates. It also is obvious that EDRF/nitric oxide alone cannot explain all endothelium-dependent relaxations. Thus, prostacyclin triggers a renewed interest as an endothelium-derived relaxing substance, but yet unidentified endothelial mediators (e.g. endothelium-derived hyperpolarizing factor, EDHF) also can contribute to endothelium-dependent relaxations.

The scope on EDRF has widened since it became obvious that the factor
not only affects the underlying smooth muscle, but also platelets, breaking their adhesion and aggregation. The latter effect is particularly pronounced in the presence of prostacyclin, and the view emerges progressively that the combined release of EDRF and the vasodilator prostaglandin may well represent a major physiological mechanism aimed at preventing the coagulation of blood in healthy blood vessels. Hence, it is not surprising that the repeated observation that diseased blood vessels release less EDRF has led to the proposal that the dysfunction of the endothelium may not only lead to abnormal vasoconstriction, but may also facilitate thrombotic episodes. Thus, the burgeoning area of endothelium-dependent relaxation is currently of great interest to understand the events leading to vascular disease. This monograph contains the proceedings of the first part of the International Symposium on Endothelium-Derived Vasoactive Factors which was held in Philadelphia from May 1 to May 3, 1989. The first part focuses on endothelium-dependent relaxations and their mediation by endothelium-derived relaxing factors (EDRF, EDHF and prostacyclin). The monograph discusses the chemical nature (e.g. nitric oxide as EDRF) of the factor(s), the cellular events leading to the release, and the ways by which relaxation of smooth muscle and inhibition of aggregation of platelets are achieved. Special attention is paid to recent data concerning the pharmacology of prostacyclin and its stable analogue, iloprost. This book will be of interest not only to the cardiovascular pharmacologist and physiologist, but also to the physician engaged in the treatment of cardiovascular disease, as it may help his/her understanding of how vascular disease comes about and how a more rational therapy can be initiated.

November 1989 Gabor M. Rubanyi, MD, PhD
Paul M. Vanhoutte, MD, PhD