Neuroimmunoendocrinology

Chemical Immunology
Vol. 52

Series Editors
Kimishige Ishizaka, La Jolla, Calif.
Peter J. Lachmann, Cambridge
Byron H. Waksman, New York, N.Y.

KARGER

Neuroimmunoendocrinology
2nd, revised and enlarged edition

Volume Editor
J. Edwin Blalock, Birmingham, Ala.

22 figures, 3 color plates and 14 tables, 1992

KARGER

Chemical Immunology
Formerly published as `Progress in Allergy'
Founded 1939 by Paul Kalls

Vol. 43 (1st edition)
Neuroimmunoendocrinology
Editors: J. Edwin Blalock; Kenneth L. Bost, Birmingham, Ala.

Bibliographic Indices
This publication is listed in bibliographic services, including Current Contents and Index Medicus.

Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to
check the package insert for each drug for any change in indications and dosage and for added
warnings and precautions. This is particularly important when the recommended agent is a new
and/or infrequently employed drug.

All rights reserved.
No part of this publication may be translated into other languages, reproduced or utilized in any
form or by any means, electronic or mechanical, including photocopying, recording, micro-copying,
or by any information storage and retrieval system, without permission in writing from
the publisher.

Copyright 1992 by S. Karger AG, P.O. Box, CH-4009 Basel (Switzerland)
Printed on acid-free paper.
ISBN 3-8055-5488-5

Contents
Introduction to the 1st Edition . IX
Introduction to the 2nd Edition ... XI

Production of Peptide Hormones and Neurotransmitters by the
Immune System
Blalock, J.E. (Birmingham, Ala.) . 1

Introduction ... 1
Production and Structure of Leukocyte-Derived Peptide Hormones 1
Pituitary Hormones 1
Hypothalamic Releasing Hormones 6
Neuropeptides . 7
New Proteins .. 8
Regulation of Leukocyte-Derived Peptide Hormones 8
Processing of Leukocyte-Derived Peptide Hormones 13
Immunologic Cell Types that Produce Peptide Hormones . 15
Functions of Leukocyte-Derived Peptide Hormones . 15
Acknowledgments . 18
References 19

Noradrenergic and Peptidergic Innervation of Lymphoid Organs

Introduction .. 25
General Patterns of Innervation of Lymphoid Organs . 29
Innervation of the Bone Marrow and Thymus 36
Innervation of the Spleen . 37
Innervation of Lymph Nodes .. 39
Contents VI

Neuroendocrine Peptide Hormone Regulation of Immunity
Johnson, H.M.; Downs, M.O.; Pontzer, C.H. (Gainesville, Fla.) 49

Introduction .. 49
POMC and Proenkephalin Products . 50
Arginine Vasopressin 55
Thyroid-Stimulating Hormone (Thyrotropin, TSH) and Related Hormones 58
Substance P .. 60
Vasoactive Intestinal Peptide 62
Growth Hormone 66
Prolactin .. 68
Somatostatin 70
Second Messenger Signals for Neuroendocrine Hormones 70
Conclusions .. 74
References .. 74

Neuroendocrine Peptide Receptors on Cells of the Immune System
Carr, D.J.J. (Birmingham, Ala.) 84

Introduction .. 84
Arginine Vasopressin Receptors 85
Corticotropin Receptor .. 86
-Endorphin Receptors ..87
Growth Hormone Receptors .. 88
Nerve Growth Factor Receptors .. 89
Opioid Receptors .. 90
Prolactin Receptor .. 91
Somatostatin Receptors 92
Substance P Receptors 92
Thyrotropin Receptor . 93
Vasoactive Intestinal Peptide Receptor 93
Other Neuropeptide Receptors 94
Hypothalamic Releasing Hormone Receptors 95
In Summary .. 96
References .. 99
Cytokines: Influence on Glial Cell Gene Expression and Function
Benveniste, E.N. (Birmingham, Ala.) 106

Introduction 106
Glial Cells: Classification, Lineage and Function 107
Astrocytes 107
Astrocyte Lineage 107
Astrocyte-Specific Antigens 109
Astrocyte Function 110

Contents VII

Oligodendrocytes 112
Oligodendrocyte Lineage 112
Oligodendrocyte-Specific Antigens 112
Oligodendrocyte Function 114
Microglia 114
Microglia Markers 115
Microglia Functions 115
Abnormal Glial Cell Function in Neurological Diseases 116
In vivo C’S Sources of Cytokines 117
Cytokines 118
Tumor Necrosis Factor-a 119
Interleukin-1 120
Interleukin-6 121
Interleukin-2 121
Interferon-? 122
Components of the Immune System 122
Immune Cell-Derived Cytokines and Their Effect on Glial Cells 124
Interleukin-1 and Glial Cells 126
Biological Effects of L-1 on Glial Cells: Astrocytes 126
IL-1 Production by Glial Cells 127
Role of IL-1 in EEE 128
Interleukin-2 and Glial Cells 128
Biological Effects of IL-2 on Glial Cells: Oligodendrocytes 128
Interferon-? and Glial Cells 129
Biological Effects of IFN- on Glial Cells 129
Expression of Class II Antigens on Astrocytes: Correlation with 133
Modulation of Astrocyte Gene Expression by IFN-? 133
Role of IFN?- in EEE 134
Tumor Necrosis Factor-a and Glial Cells 135
Biological Effects of TIF-ci on Glial Cells 135
The study of interactions between the immune and neuroendocrine systems is a currently popular and rapidly advancing field which had its foundation in anecdotal observations of the association between 'personality' and disease. A measure of scientific credence was afforded to the area by the observation that, like many other physiologic responses, immune reactions could be conditioned in a classical Pavlovian fashion [1]. A possible mechanism was then found in Selye's [2] observation of thymic involution during `stress'. The concept of the effects of stress on immunity turned out to be a two-edged sword. On the one hand, it provided a molecular basis, in the form of adrenal glucocorticoids, for neuroendocrine control of immunity. On the other hand, it led to the general and often currently held notion that steroid hormones are the sole players in neuroendocrine modulation of the immune system. Of course, recent studies have shown that this is clearly not the case since stressed adrenalectomized animals are functionally immunosuppressed [3]. Another impediment to the development of the area was the ability to have immunologic responses proceed in vitro. This inadvertently led to the idea that the immune system is a totally autonomous and self-regulating unit. If this were the case, then the immune system would be unlike all other organ systems. Furthermore, this view overlooks the rich hormonal milieu in which many in vitro immune responses occur. The end result of this series of events is the thought that if immune neuroendocrine interactions occur, they are mediated by steroid hormones. The picture has been further clouded by the predominance of studies of the psychological aspects of immune neuroendocrine interactions. Though it is not necessarily our view, such studies have given the field an aura of being a `soft' science, thus the intent of Neuroimmunoendocrinology is to highlight the cellular and molecular aspects of this field.

References
Introduction to the 2nd Edition

In the 3 years since the first publication of this volume, we have witnessed an explosion of information on immune neuroendocrine interactions. This has been evidenced by numerous international congresses, the inclusion of many symposia at the annual meetings of immunology, endocrinology, and neuroscience societies and the initiation of at least two new journals on the subject (i.e., Progress in NeuroEndocrinImmunology and Advances in Neuroimmunology). Among the highlights which have fueled the scientific growth of this discipline are: the tremendous increase in the number of neuroendocrine hormones and peptide neurotransmitters as well as their receptors which are endogenous to the immune system; the finding of cytokines such as IL-1 and IL-6 as well as their receptors in neural and endocrine tissues; and the profound effects of bidirectional communication between the immune and neuroendocrine systems on an animal's physiology. As an example, it is interesting to note that IL-1 is probably a more potent activator of the hypothalamic pituitary adrenal axis than is corticotropin releasing factor (CRF). Thus the paradox that without knowing it immunologists discovered a most potent `hypothalamic releasing factor'. Contrariwise, CRF is a very effective inducer of IL-1. Thus, endocrinologists without knowing it discovered a cytokine. Such are the strange but exciting ironies of the development of a new discipline.

As a result of the great accumulation of new knowledge and the overwhelming success of the first edition, myself, and the coauthors have written the present revised edition of Neuroimmunoendocrinology. Once again, the emphasis is on the molecular, cellular, and physiologic aspects of immune neuroendocrine interactions. Because of the expansion of the literature in this area, most chapters and bibliographies are longer. It is our fondest hope that this volume will be a valuable resource to the evolution of this exciting new discipline.