Molecular Genetics of Coronary Artery Disease

Monographs in Human Genetics

Vol. 14

Series Editor
Robert S. Sparkes, Los Angeles, Calif.

KARGE R
Basel Freiburg Paris London New York New Delhi Bankok Singapore Tokyo Sydney

Molecular Genetics of
Coronary Artery Disease

Candidate Genes and Processes in Atherosclerosis

Volume Editors
Aidons J. Lusis, Los Angeles, Calif.
Jerome I. Rotter, Los Angeles, Calif.
Robert S. Sparkes, Los Angeles, Calif.

70 figures, 1 color plate and 38 tables, 1992

KARGER
Basel Freiburg Paris London New York New Delhi Bankok Singapore Tokyo Sydney

Monographs in Human Genetics

Library of Congress Cataloging-in-Publication Data
Molecular genetics of coronary artery disease: candidate genes and processes in atherosclerosis/
volume editors, Aidons J. Lusis, Jerome I. Rotter, Robert S. Sparkes.
(Monographs in human genetics; Vol. 14)
Includes bibliographical references and index.
3. Coronary heart disease - Etiology.
Sparkes, Robert S., 1930-. IV. Series: Monographs
Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication.
However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All rights reserved.
No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

Copyright 1992 by
S. Karger AG, P.O. Box,
CH-4009 Basel (Switzerland)
Printed in Switzerland on acid-free paper by
Thur AG Offsetdruck, Pratteln
ISBN 3-8055-5558-X

Contents

Introduction .. XVI

I. Cellular Events
Pathology of Atherogenesis
Berliner, J.A. (Los Angeles, Calif.); Gerrity, R.G. (Augusta, Ga.)
Introduction .. 1
The Normal Vessel .. 2
The Pre-Fatty Streak Stage .. 3
The Fatty Streak .. 4
The Fibro-Fatty Lesion ... 6
The Fibrous Plaque .. 10
Thrombus Formation and Complicated Plaques ... 10
Comparison of Atherogenesis in the Swine Aorta with That Seen in Other Animal Models and in
Human Lesions .. 12
Coronary Atherosclerosis .. 14
Conclusion .. 15
Acknowledgments ... 15
References ... 15

Cellular Interactions of the Arterial Wall
Territo, M.C.; Berliner, J.A.; Navab, M. (Los Angeles, Calif.) ... 18

Introduction .. 18
Adhesion of the Blood Cells to the Endothelium .. 19
Leukocyte Adhesion .. 19
Platelet Adhesion .. 21
Factors Involved in the Recruitment of Cells in the Vessel Wall .. 21
Candidate Genes for the Role of Modified Low-Density Lipoprotein in Atherogenesis

51

The Scavenger Receptor

.......................... 51

15-Lipoxygenase

.......................... 51

Concluding Remarks

.......................... 53

Acknowledgments

.......................... 54

References

.......................... 54

Viral Genes and Atherogenesis

Kaner, R.J.; Hajjar, D.P. (New York, N.Y)

.......................... 62

Introduction

.......................... 62

Epidemiology

.......................... 63

Pathobiology

.......................... 64

Cellular and Molecular Effects

.......................... 65

Molecular Genetics

.......................... 69

Herpesvirus Entry into Vascular Cells

.......................... 74

Viral Activation of the Immune System

.......................... 74

Conclusion

.......................... 76

Acknowledgements

.......................... 76

References

.......................... 76

Mechanical Factors in Artery Wall Function and Atherogenesis

Deroer, L.L. (Los Angeles, Calif.)

.......................... 83
Introduction ... 83
Lesion Distribution .. 83
Paradoxical Lesion Location at the Ostia 84
Characteristics of Sites of Predilection 84
Whole Artery Sensitivity to Mechanical Forces in vivo 84
Cellular Sensitivity to Mechanical Forces in vivo 85
Mechanical Forces Acting on the Artery Wall 85
Reynolds Number .. 86
Interactions of Solid and Fluid Stresses 86
Measurement of Vascular Force Fields 87
Calculation of Vascular Force Fields 87
Effects of Shear in vivo .. 87
Alignment and Shape ... 87
Intimal Thickening ... 87
Cytoskeleton ... 87

Contents VII

DNA Synthesis and Proliferation ... 87
Glycocalyx ... 87
Release of Endothelium-Derived Relaxing Factor 88
Effects of Shear in vitro ... 88
Methods ...
II. Lipoprotein Metabolism

Lipoprotein Metabolism: Chylomicrons, Very-Low-Density Lipoproteins and Low-Density Lipoproteins
Schumaker, V.; Lembertas, A. (Los Angeles, Calif.) ... 98

Introduction .. 98
Exogenous and Endogenous Pathways of Lipid Transport ... 100
Molecular Biology of Apolipoprotein B ... 105
The Apolipoprotein B Gene Contains the Longest Exon of Any Mammalian Gene 105
A Novel, Tissue-Specific Apolipoprotein B Editing Produces the mRNA for Apolipoprotein B48 . . 105
Apolipoprotein B Surrounds the LDL ... 106
Molecular Biology of Apolipoprotein E ... 110
The Apolipoprotein E Gene Is Part of a Multigene Family .. 110
The Apolipoprotein E Message Is Found in a Wide Variety of Tissues ... 111
The Apolipoprotein E Protein Contains a Well-Characterized Binding Site for the Low-Density Lipoprotein Receptor .. 111
Molecular Biology of the Low-Density Lipoprotein Receptor ... 112
The Low-Density Lipoprotein Receptor Gene Is Regulated by a Sterol Response Element 112
The Low-Density Lipoprotein Receptor Message Is Widely Distributed 114
The Low-Density Lipoprotein Receptor Protein Is Divided into Domains with Different Functions 114
Abetalipoproteinemia and Hypobetalipoproteinemia ... 116
Familial Defective Apolipoprotein B100 ... 119
Familial Combined Hyperlipidemia ... 121
Familial Dysbetalipoproteinemia ... 123

Contents VIII

Familial Hypercholesterolemia ... 125
Concluding Remarks ... 127
Acknowledgements .. 128
References ... 128

Lipoprotein Metabolism: High-Density Lipoprotein
Karathanasis, S.K. (Boston, Mass.) ... 140

Introduction .. 140
Overview of the Lipid Transport System ... 141
Definition of High-Density Lipoprotein .. 142
Structural Heterogeneity of High-Density Lipoprotein 142
Functional Diversity of High-Density Lipoprotein 143
Structure-Function Relationships of High-Density Lipoprotein 144
Origin of High-Density Lipoprotein ... 146
Metabolic Relationships: The Concept of Functional States of High-Density
Lipoprotein ... 148
High-Density Lipoprotein-Cell Interactions ... 149
Cholesterol Efflux: The Aqueous Diffusion Model 150
Cholesterol Efflux: The High-Density Lipoprotein Receptor 151
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol Efflux: The Role of Intracellular Phospholipids and Protein Kinase C</td>
<td>152</td>
</tr>
<tr>
<td>Cloning of the High-Density Lipoprotein Receptor?</td>
<td>154</td>
</tr>
<tr>
<td>Cholesterol Efflux: The Role of Apolipoprotein</td>
<td>154</td>
</tr>
<tr>
<td>Catabolism of High-Density Lipoprotein</td>
<td>154</td>
</tr>
<tr>
<td>Environmental Factors Influencing Plasma Levels of High-Density Lipoprotein</td>
<td>156</td>
</tr>
<tr>
<td>Genetic Factors Influencing Plasma Levels of High-Density Lipoprotein</td>
<td>157</td>
</tr>
<tr>
<td>High-Density Lipoprotein and Atherosclerosis</td>
<td>160</td>
</tr>
<tr>
<td>Perspective</td>
<td>162</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>162</td>
</tr>
<tr>
<td>References</td>
<td>162</td>
</tr>
<tr>
<td>Triglyceride Lipases, Hypertriglyceridemia and Atherosclerosis</td>
<td>172</td>
</tr>
<tr>
<td>Introduction</td>
<td>172</td>
</tr>
<tr>
<td>Lipases and Triglyceride Metabolism</td>
<td>173</td>
</tr>
<tr>
<td>Lipases and Intestinal Triglyceride Absorption</td>
<td>173</td>
</tr>
<tr>
<td>Lipases and Circulating Triglyceride Metabolism</td>
<td>177</td>
</tr>
<tr>
<td>Molecular Genetics of Lipase-Based Hypertriglyceridemia</td>
<td>179</td>
</tr>
<tr>
<td>Familial Chylomicronemia</td>
<td>179</td>
</tr>
<tr>
<td>Familial Hepatic Lipase Deficiency</td>
<td>182</td>
</tr>
<tr>
<td>Familial Combined Hyperlipidemia</td>
<td>182</td>
</tr>
<tr>
<td>Triglycerides and Atherosclerosis</td>
<td></td>
</tr>
</tbody>
</table>
Lp(a) Lipoprotein: An Important Genetic Risk Factor for Atherosclerosis
Berg, K. (Oslo) ... 189

Introduction .. 189

Discovery of the Lp(a) Lipoprotein System and Studies in the Early Years 190

Contents IX

Quantitative Lp(a) Lipoprotein Variation ... 191
A Distinct Class of Lipoprotein Particles ... 191
Relationship between Lp(a) Phenotypes and Lp(a) Lipoprotein Concentration 193
Methodological Problems in Lp(a) Lipoprotein Studies .. 193
Genetics of the Lp(a) Lipoprotein ... 196
Isoforms of the Lp(a) Polypeptide Chain ... 197
Lp(a) Lipoprotein and Atherosclerosis ... 197
How Important Is a High Level of Lp(a) Lipoprotein in Causing Premature Coronary Heart Disease .. 198
Lp(a) Lipoprotein and Other Atherosclerotic Disorders ... 199
Linkage Studies of Lp(a) Lipoprotein ... 199
Primary Structure of the Polypeptide Chain Carrying the Lp(a) Antigen(s) 200
III. Risk Factors
Molecular Genetics of Hypertension
Burke, W.; Motulsky, A.G. (Seattle, Wash.)
Cation Transport Mechanisms ... 230
Sodium-Lithium Countertransport ... 230
Sodium-Potassium Cotransport ... 231
Sodium/Potassium ATPase (Sodium Pump) .. 232
Summary ... 232
The Renin-Angiotensin System ... 232
Kallikreins ... 233
Atrial Natriuretic Factor ... 233
Other Approaches .. 233
Other Physiologic Studies ... 233
Other Molecular Genetic Techniques ... 233
Conclusion .. 234
References ... 235

Hemostatic Factors in Ischemic Heart Disease and Stroke:
Pathophysiologic Significance and Molecular Genetics
Francis, R.B., Jr. (Los Angeles, Calif.) .. 237

Introduction ... 237
Hemostatic Abnormalities and Atherosclerotic Cardiovascular Disease 239
Elevated Fibrinogen .. 239
Elevated Factor VII Coagulant Activity .. 241
Elevated Factor VIII/von Willebrand Factor ... 242
Reduced Coagulation Inhibitors ... 242
Reduced Fibrinolysis .. 242
Increased Platelet Activity .. 243
Molecular Genetics of Hemostatic Factors Linked to Atherosclerotic Cardiovascular Disease 244
Fibrinogen ... 244
Factor VII .. 244
Factor VIII ... 244
von Willebrand Factor .. 245
Antithrombin III ... 245
Protein C .. 245
Protein S .. 246
Tissue Plasminogen Activator ... 246
Plasminogen Activator Inhibitor 1 ... 246
Future Prospects ... 246
References ... 247

Review of the Evidence that Immunogenetic Factors Are Involved in the Etiology of Atherosclerosis
Acton, R.T.; Go, R.C.P.; Roseman, J.M. (Birmingham, Ala.) ... 253

Introduction .. 253
Animal Studies ... 253

Contents XI
Presence of Immune Components in the Atherosclerotic Plaque .. 254
Clinical Studies Implicating Immune Factors ... 256
Population Studies .. 259
Genetics of the Immune System in Relation to Atherosclerosis ... 262
Immunogenetic Models of Atherosclerosis .. 264
Acknowledgements ... 266
References .. 266

Diabetes mellitus and Coronary Heart Disease Genetics
Shohat, T.; Raffel, L.F.; Vadhaim, C.M.; Rotter, J.I. (Los Angeles, Calif.) ... 272

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>273</td>
</tr>
<tr>
<td>Diabetes - Definition and Classification</td>
<td>273</td>
</tr>
<tr>
<td>Evidence for a Genetic Role in Diabetes</td>
<td>274</td>
</tr>
<tr>
<td>Genetic Studies in Insulin-Dependent Diabetes mellitus</td>
<td>275</td>
</tr>
<tr>
<td>The HLA Region</td>
<td>275</td>
</tr>
<tr>
<td>Non-HLA Genes in Insulin-Dependent Diabetes mellitus</td>
<td>277</td>
</tr>
<tr>
<td>Genetics of Non-Insulin-Dependent Diabetes mellitus</td>
<td>277</td>
</tr>
<tr>
<td>Specific Candidate Genes</td>
<td>278</td>
</tr>
<tr>
<td>Diabetes Due to Mutant Insulins</td>
<td>281</td>
</tr>
<tr>
<td>Maturity-Onset Diabetes of the Young</td>
<td>281</td>
</tr>
<tr>
<td>Diabetes and Atherosclerosis - Epidemiology</td>
<td>281</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>General Risk Factors for Atherosclerosis in Diabetes</td>
<td>284</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>284</td>
</tr>
<tr>
<td>Hyperinsulinemia</td>
<td>285</td>
</tr>
<tr>
<td>Abnormal Lipid Profile</td>
<td>285</td>
</tr>
<tr>
<td>Hypertension</td>
<td>286</td>
</tr>
<tr>
<td>Obesity</td>
<td>287</td>
</tr>
<tr>
<td>Specific Risk Factors for Coronary Artery Disease in Diabetes</td>
<td>287</td>
</tr>
<tr>
<td>Insulin Resistance</td>
<td>288</td>
</tr>
<tr>
<td>Hemostatic Abnormalities</td>
<td>290</td>
</tr>
<tr>
<td>Lipoprotein Receptors</td>
<td>290</td>
</tr>
<tr>
<td>Peptide Growth Factors</td>
<td>290</td>
</tr>
<tr>
<td>Advanced Nonenzymatic Glycosylation Products</td>
<td>291</td>
</tr>
<tr>
<td>Hyperestrogenemia</td>
<td>291</td>
</tr>
<tr>
<td>Role of Genetics in Diabetic Complications</td>
<td>291</td>
</tr>
<tr>
<td>Population Data</td>
<td>291</td>
</tr>
<tr>
<td>Clinical Data</td>
<td>292</td>
</tr>
<tr>
<td>Family Studies</td>
<td>292</td>
</tr>
<tr>
<td>Genetic Models for Diabetic Macrovascular Disease</td>
<td>293</td>
</tr>
<tr>
<td>Studies of Specific Genes</td>
<td>297</td>
</tr>
<tr>
<td>HLA Region on Chromosome 6</td>
<td>297</td>
</tr>
<tr>
<td>Insulin Gene on Chromosome 11</td>
<td>297</td>
</tr>
</tbody>
</table>
IV. Genetics

Gene-Diet Interactions in Lipoprotein Metabolism
Dreon, D.M.; Krauss, R.M. (Berkeley, Calif.) .. 325

Introduction .. 325
Low-Density Lipoprotein Receptor in Cholesterol Homeostasis 326
Plasma Cholesterol Level and Dietary Fat and Cholesterol Responsiveness 327
Apolipoprotein B .. 329
Hypertriglyceridemia and Diet Responsiveness ... 330
Apolipoprotein B and Diet Responsiveness ... 331
Apolipoprotein E .. 331
Apolipoprotein E and Diet Responsiveness ... 332
Defective High-Density Lipoprotein Metabolism ... 337
Apolipoprotein A and C Polymorphism in Relation to Diet Responsiveness 338
Low-Density Lipoprotein Subclass Patterns .. 338
Hyperinsulinemia ... 339
Low-Density Lipoprotein Heterogeneity and Diet Responsiveness 340
Conclusion .. 341
References .. 342

Molecular Geography of Inherited Disorders of Lipoprotein Metabolism:
Lipoprotein Lipase Deficiency and Familial Hypercholesterolemia
Hayden, M.R. (Vancouver, B.C.); De Braekeleer, M. (Chicoutimi, Que.); Henderson, H.E.
Animal Model Approach ... 376
Identification of Polymorphisms .. 376
Restriction Fragment Length Polymorphisms .. 376
Polymorphisms Not Affecting Restriction Sites 378
Highly Variable Sequences ... 378
Statistical Considerations ... 380
Informativeness of Polymorphisms .. 380
Association and Linkage Analysis ... 383
Candidate Genes .. 385
Chromosomal Organization ... 385
Polymorphisms .. 390
Assessment of Problem ... 390
Appendix .. 393
Acknowledgement .. 413
References ... 413

Identification of New Genes Contributing to Atherosclerosis:
The Mapping of Genes Contributing to Complex Disorders in Animal Models
Warden, C.H.; Daluiski, A.; Lusts, A.J. (Los Angeles, Calif.) 419

Introduction .. 419
The Difficulty of Identifying New Genes for Complex Diseases Using Human Studies 420
Candidate Gene Approach .. 420
Introduction

Atherosclerosis is a disease of large arteries that has fascinated and puzzled physicians and scientists for more than a century. It is the major cause of heart disease and stroke, which together account for more than one third of deaths in Western populations. This volume provides a comprehensive description of our present state of knowledge of the cellular, molecular and physiologic processes underlying atherosclerosis. Because of the interactive nature of many of these processes, it is important to consider them together in attempting to formulate hypotheses concerning the mechanisms underlying atherogenesis.

Perhaps the first breakthrough in understanding the basis of the disease came from the work of Carl Miller in Oslo in the 1930s. He demonstrated that the triad of high plasma cholesterol, xanthomas and premature coronary heart disease (CHD) segregated together in families, providing evidence for a genetic component of the disease as well as a molecular link to cholesterol metabolism. The past two decades, in particular, have witnessed major advances in our knowledge of the cellular and molecular determinants of CHD. The molecular details of familial hypercholesterolemia, the disorder studied by Carl Miller, have been established, and a variety of other ‘major gene’ disorders associated with CHD have been at least partially characterized. Pathologic studies have demonstrated the importance of various blood cells as well as artery wall cells in atherogenesis. Epidemiologic studies have shown that high blood cholesterol is a prerequisite for most forms of atherosclerosis
and have revealed a number of secondary risk factors including hypertension, diabetes, autoimmune disorders and coagulation factor levels. Evidence for an important genetic component in the disease has continued to accumulate, although it is now clear that CHD results from an interaction between genetic and environmental factors.

The volume is divided into 4 sections. The first deals with cellular interactions of the artery wall and blood elements involved in atherogenesis. The chapter by Berliner and Gerrity provides a review of the pathology of the disease, including results from studies of animal models as well as humans. The chapter by Territo et al. discusses the growth factors, cellular adhesion proteins, chemoattractants and other molecules likely to be important in mediating the cellular events associated with various stages of the disease. The chapter by Haberland and Steinbrecher focuses on lipoprotein metabolism in the artery wall, including lipoprotein modification and cellular uptake of lipoproteins. The chapter by Kaner and Hajjar reviews evidence for a viral component in the disease and the possibility that some forms of atherosclerosis result from nonmalignant transformation of arterial smooth muscle cells. The chapter by Denver discusses the nature of hemodynamic forces on the artery wall and possible mechanisms by which they may influence atherogenesis.

The second section of the volume deals with lipoprotein metabolism. A high level of blood cholesterol in the form of low-density lipoproteins (LDL) can be considered the primary risk factor for the disease. In the absence of severe or moderate hypercholesterolemia,
individuals with `secondary' risk factors such as diabetes, hypertension and smoking, rarely develop CHD. The chapter by Schumaker and Lembertas reviews the metabolism of LDL and very-low-density lipoproteins (VLDL). There has been considerable progress in this area, as several major gene effects have been characterized at the molecular level. The chapter by Karathanasis reviews high-density lipoprotein (HDL) metabolism. Low levels of HDL constitute a major risk factor in atherosclerosis, but in contrast to LDL and VLDL the metabolism of HDL and the mechanism by which HDL protects against atherosclerosis remain largely unknown. The chapter by Doolittle et al. discusses triglyceride metabolism. The relationship of plasma triglycerides to CHD has been a controversial subject, but clearly the metabolism of the triglyceride-rich lipoprotein by lipases and other enzymes contributes importantly to the levels of LDL and HDL. The chapter by Berg reviews one of the major risk factors in CHD, high levels of a lipoprotein called Lp(a). This `mysterious' particle resembles LDL in containing a core of cholesteryl esters and a single molecule of apolipoprotein B, but in addition it contains a molecule or two of a large and genetically heterogeneous protein designated apo(a). The levels of Lp(a) vary greatly among individuals, and epidemiologic studies have shown that high Lp(a) levels are strongly associated with CHD. The chapter by Davis et al. provides an overview of cholesterol homeostasis, with emphasis on bile acid metabolism. Cholesterol is obtained from the diet and synthesized by many tissues, but it can be removed only by transport to the liver, where it is oxidized to form bile acids. Thus, it's likely that bile
acid synthesis and circulation play a pivotal role in determining the levels of circulating lipoproteins.

The third section of the book deals with 'risk factors' for the disease. These include:
hypertension (chapter by Burke and Motulsky);
levels of coagulation factors (chapter by Francis); certain autoimmune disorders (chapter by Acton et al.);
diabetes (chapter by Shohat et al.); and the rare disease homocystinuria (chapter by Wilcken and Dudman). With the exception of homocystinuria, these risk factors are complex and genetically heterogeneous. At present, the mechanisms by which they contribute to atherosclerosis are poorly understood, although many hypotheses have been proposed. Thrombosis is usually the final occlusive event in myocardial infarction or stroke, providing a possible explanation for the involvement of coagulation and thrombolytic factors. It's likely that hypertension, immunologic disorders and homocystinuria affect cells of the artery wall in ways that promote lipoprotein accumulation, monocyte entry or smooth muscle cell proliferation. Diabetes has broad effects on lipoprotein cellular metabolism, although which effects are most relevant to atherosclerosis is unclear. As mentioned above, the processes affecting atherosclerosis are highly interactive, and few of the known risk factors are independent. For example, coagulation and thrombolysis are importantly influenced by diabetes, obesity, inflammatory responses and lipoprotein levels.
The final section of the volume deals with the genetics of CHD. While it's clear that

Introduction XVII

atherosclerosis has important genetic influences, environmental influences (particularly
diet) are also significant. The differences in the incidence of CHD between Western populations (where the disease is the major cause of death) and most other populations (where CHD is relatively uncommon) appear to result primarily from environmental influences. Thus, Japanese immigrants who adopt a Western life-style have a greatly increased incidence of CHD. Within populations, however, genetic influences appear to predominate. The chapter by Dreon and Krauss reviews the nature of genetic-dietary interactions related to atherosclerosis, a poorly understood but important subject. The chapter by Hayden et al. discusses differences between populations in genes involved in lipoprotein metabolism, a topic of interest not only for understanding population dynamics but also disease diagnosis. The chapter by Mehrabian and Lusis discusses molecular methods for the analysis of CHD. The final chapter by Warden et al. reviews a powerful new approach for analysis of polygenic traits in animal models, an approach which promises to revolutionize understanding of complex genetic diseases.

In conclusion, the processes involved in atherosclerosis are very diverse, and understanding how they contribute to the disease represents a formidable challenge. Nevertheless, the opportunities have never been greater. It is our hope that this volume will be helpful in providing an overview of a large amount of information which must be considered to develop a coherent synthesis for mechanisms involved in the disease.

A.J. Lusis, for the editors