Molecular Genetics of Coronary Artery Disease

Monographs in Human Genetics

Vol. 14

Series Editor
Robert S. Sparkes, Los Angeles, Calif.

KARGE R
Basel Freiburg Paris London New York New Delhi Bankok Singapore Tokyo Sydney

Molecular Genetics of Coronary Artery Disease

Candidate Genes and Processes in Atherosclerosis

Volume Editors
Aidons J. Lusis, Los Angeles, Calif.
Jerome I. Rotter, Los Angeles, Calif.
Robert S. Sparkes, Los Angeles, Calif.

70 figures, 1 color plate and 38 tables, 1992

KARGER
Basel Freiburg Paris London New York New Delhi Bankok Singapore Tokyo Sydney

Monographs in Human Genetics

Library of Congress Cataloging-in-Publication Data
Molecular genetics of coronary artery disease: candidate genes and processes in atherosclerosis/
volume editors, Aidons J. Lusis, Jerome I. Rotter, Robert S. Sparkes.
(Monographs in human genetics; Vol. 14)
Includes bibliographical references and index.
3. Coronary heart disease- Etiology.
Sparkes, Robert S., 1930- . IV. Series: Monographs
Drug Dosage
The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.

All rights reserved.
No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.

Copyright 1992 by
S. Karger AG, P.O. Box,
CH-4009 Basel (Switzerland)
Printed in Switzerland on acid-free paper by
Thur AG Offsetdruck, Pratteln
ISBN 3-8055-5558-X

Contents

Introduction ... XV

I. Cellular Events
Pathology of Atherogenesis
Berliner, J.A. (Los Angeles, Calif.); Gerrity, R.G. (Augusta, Ga.) ...
Growth Factors ... 23
Production of Growth Factors by Endothelial Cells 23
Production of Growth Factors by Leukocytes, Platelets and Smooth Muscle Cells 25
Mitogenic Effects of Growth Factors on Vascular Cells 25
Modulation of Cellular Functions .. 26
Possible Candidate Genes .. 28
References .. 29

Contents VI

Modified Low-Density Lipoproteins: Diversity and Biological Relevance in Atherogenesis
Haberland, M.E. (Los Angeles, Calif.); Steinbrecher, U.P. (Vancouver, B.C.) 35

Introduction .. 35
The Dynamics of Low-Density Lipoprotein in the Arterial Wall 36
Classic Concept of Modified Low-Density Lipoprotein: Role in Cholesteryl Ester Deposition in Macrophages ... 38
Posttranslational, Covalent Modification of the ApoB100 Protein of Low-Density Lipoprotein 38
Lipoprotein Immune Complexes .. 39
Proteoglycan Complexes of Low-Density Lipoprotein 40
Lipoprotein Aggregates .. 41
Posttranslational Modification of Low-Density Lipoprotein by Transition Metal-Induced Oxidation 42
NeoClassic Concepts of Modified Low-Density Lipoprotein: Roles in Cellular Activation 50
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>83</td>
</tr>
<tr>
<td>Lesion Distribution</td>
<td>83</td>
</tr>
<tr>
<td>Paradoxical Lesion Location at the Ostia</td>
<td>84</td>
</tr>
<tr>
<td>Characteristics of Sites of Predilection</td>
<td>84</td>
</tr>
<tr>
<td>Whole Artery Sensitivity to Mechanical Forces in vivo</td>
<td>84</td>
</tr>
<tr>
<td>Cellular Sensitivity to Mechanical Forces in vivo</td>
<td>85</td>
</tr>
<tr>
<td>Mechanical Forces Acting on the Artery Wall</td>
<td>85</td>
</tr>
<tr>
<td>Reynolds Number</td>
<td>86</td>
</tr>
<tr>
<td>Interactions of Solid and Fluid Stresses</td>
<td>86</td>
</tr>
<tr>
<td>Measurement of Vascular Force Fields</td>
<td>87</td>
</tr>
<tr>
<td>Calculation of Vascular Force Fields</td>
<td>87</td>
</tr>
<tr>
<td>Effects of Shear in vivo</td>
<td>87</td>
</tr>
<tr>
<td>Alignment and Shape</td>
<td>87</td>
</tr>
<tr>
<td>Intimal Thickening</td>
<td>87</td>
</tr>
<tr>
<td>Cytoskeleton</td>
<td>87</td>
</tr>
<tr>
<td>DNA Synthesis and Proliferation</td>
<td>87</td>
</tr>
<tr>
<td>Glycocalyx</td>
<td>87</td>
</tr>
<tr>
<td>Release of Endothelium-Derived Relaxing Factor</td>
<td>88</td>
</tr>
<tr>
<td>Effects of Shear in vitro</td>
<td>88</td>
</tr>
<tr>
<td>Methods</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Alignment and Shape</td>
<td>88</td>
</tr>
<tr>
<td>Lipid Internalization</td>
<td>88</td>
</tr>
<tr>
<td>Pinocytosis</td>
<td>88</td>
</tr>
<tr>
<td>Cytoskeleton</td>
<td>89</td>
</tr>
<tr>
<td>Wound Healing</td>
<td>89</td>
</tr>
<tr>
<td>Cell Growth</td>
<td>89</td>
</tr>
<tr>
<td>Synthesis</td>
<td>89</td>
</tr>
<tr>
<td>Hyperpolarization</td>
<td>89</td>
</tr>
<tr>
<td>Gene Transcription</td>
<td>89</td>
</tr>
<tr>
<td>Internal Wall Stretch/Stress</td>
<td>90</td>
</tr>
<tr>
<td>Methods</td>
<td>90</td>
</tr>
<tr>
<td>Morphology, Alignment and Shape</td>
<td>90</td>
</tr>
<tr>
<td>Adhesion</td>
<td>91</td>
</tr>
<tr>
<td>Cell Growth</td>
<td>91</td>
</tr>
<tr>
<td>Synthesis of Matrix and Cytoskeletal Components</td>
<td>91</td>
</tr>
<tr>
<td>Synthesis of Vasoactive Substances</td>
<td>91</td>
</tr>
<tr>
<td>Membrane-Related Changes</td>
<td>92</td>
</tr>
<tr>
<td>Gene Transcription</td>
<td>92</td>
</tr>
<tr>
<td>Effects of Pressure</td>
<td>92</td>
</tr>
<tr>
<td>Other Mechanical Forces</td>
<td>92</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>
II. Lipoprotein Metabolism

Lipoprotein Metabolism: Chylomicrons, Very-Low-Density Lipoproteins and Low-Density Lipoproteins
Schumaker, V.; Lembertas, A. (Los Angeles, Calif.) 98

Introduction ... 98
Exogenous and Endogenous Pathways of Lipid Transport 100
Molecular Biology of Apolipoprotein B .. 105
The Apolipoprotein B Gene Contains the Longest Exon of Any Mammalian Gene 105
A Novel, Tissue-Specific Apolipoprotein B Editing Produces the mRNA for Apolipoprotein B48 ... 105
Apolipoprotein B Surrounds the LDL .. 106
Molecular Biology of Apolipoprotein E .. 110
The Apolipoprotein E Gene Is Part of a Multigene Family 110
The Apolipoprotein E Message Is Found in a Wide Variety of Tissues 111
The Apolipoprotein E Protein Contains a Well-Characterized Binding Site for the Low-Density Lipoprotein Receptor .. 111
Molecular Biology of the Low-Density Lipoprotein Receptor 112
The Low-Density Lipoprotein Receptor Gene Is Regulated by a Sterol Response Element 112
The Low-Density Lipoprotein Receptor Message Is Widely Distributed 114
The Low-Density Lipoprotein Receptor Protein Is Divided into Domains with Different Functions . 114
Abetalipoproteinemia and Hypobetalipoproteinemia 116
Familial Defective Apolipoprotein B100 .. 119
Cholesterol Efflux: The Role of Intracellular Phospholipids and Protein Kinase C 152
Cloning of the High-Density Lipoprotein Receptor? ... 154
Cholesterol Efflux: The Role of Apolipoprotein ... 154
Catabolism of High-Density Lipoprotein .. 154
Environmental Factors Influencing Plasma Levels of High-Density Lipoprotein 156
Genetic Factors Influencing Plasma Levels of High-Density Lipoprotein 157
High-Density Lipoprotein and Atherosclerosis .. 160
Perspective .. 162
Acknowledgements .. 162
References ... 162

Triglyceride Lipases, Hypertriglyceridemia and Atherosclerosis

Doolittle, M.H.; Durstenfeld, A.; Garfinkel, A.S.; Schotz, M.C. (Los Angeles, Calif.) 172

Introduction ... 172
Lipases and Triglyceride Metabolism ... 173
Lipases and Intestinal Triglyceride Absorption ... 173
Lipases and Circulating Triglyceride Metabolism .. 177
Molecular Genetics of Lipase-Based Hypertriglyceridemia ... 179
Familial Chylomicronemia .. 179
Familial Hepatic Lipase Deficiency .. 182
Familial Combined Hyperlipidemia .. 182
Triglycerides and Atherosclerosis .. 182
Lp(a) Lipoprotein: An Important Genetic Risk Factor for Atherosclerosis
Berg, K. (Oslo) ... 189

Introduction ... 189
Discovery of the Lp(a) Lipoprotein System and Studies in the Early Years .. 190

Contents IX

Quantitative Lp(a) Lipoprotein Variation ... 191
A Distinct Class of Lipoprotein Particles ... 191
Relationship between Lp(a) Phenotypes and Lp(a) Lipoprotein Concentration 193
Methodological Problems in Lp(a) Lipoprotein Studies ... 193
Genetics of the Lp(a) Lipoprotein ... 196
Isoforms of the Lp(a) Polypeptide Chain ... 197
Lp(a) Lipoprotein and Atherosclerosis ... 197
How Important Is a High Level of Lp(a) Lipoprotein in Causing Premature Coronary Heart Disease ... 198
Lp(a) Lipoprotein and Other Atherosclerotic Disorders ... 199
Linkage Studies of Lp(a) Lipoprotein ... 199
Primary Structure of the Polypeptide Chain Carrying the Lp(a) Antigen(s) 200
Possible Bridge between Atherogenesis and Thrombogenesis 201
Studies on the LPA Gene 201
Concerning the Control of Lp(a) Lipoprotein Levels 203
Acknowledgements 204
References 204

Bile Acid Synthesis and the Enterohepatic Circulation: Processes Regulating Total Body Cholesterol Homeostasis
Davis, R.A.; Dueland, S.; Trawick, J.D. (San Diego, Calif.) 208

Introduction .. . 208
Enterohepatic Circulation of Bile Salts 209
Quantitative Importance of the Bile Acid Excretion in Whole-Body Cholesterol Homeostasis . . 210
Mechanisms to Regulate Cholesterol Homeostasis in Response to Dietary Cholesterol 211
Cholesterol Absorption 211
Biochemical Description and Co-Factors 211
Substrate Specificity 212
Pathophysiology 212
Genetic Variation 212
Dietary Cholesterol Induction of Bile Acid Synthesis 212
Genetic Variation 213
Hepatic Uptake of Intestinal Lipoproteins .. . 214
The Enterohepatic Circulation of Bile Acids 214
Cation Transport Mechanisms ... 230
Sodium-Lithium Countertransport .. 230
Sodium-Potassium Cotransport ... 231
Sodium/Potassium ATPase (Sodium Pump) .. 232
Summary ... 232
The Renin-Angiotensin System ... 232
Kallikreins ... 233
Atrial Natriuretic Factor ... 233
Other Approaches .. 233
Other Physiologic Studies ... 233
Other Molecular Genetic Techniques ... 233
Conclusion ... 234
References ... 235

Hemostatic Factors in Ischemic Heart Disease and Stroke:
Pathophysiologic Significance and Molecular Genetics
Francis, R.B., Jr. (Los Angeles, Calif.) ... 237

Introduction .. 237
Hemostatic Abnormalities and Atherosclerotic Cardiovascular Disease 239
Elevated Fibrinogen ... 239
Elevated Factor VII Coagulant Activity .. 241
Elevated Factor VIII/von Willebrand Factor .. 242
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced Coagulation Inhibitors</td>
<td>242</td>
</tr>
<tr>
<td>Reduced Fibrinolysis</td>
<td>242</td>
</tr>
<tr>
<td>Increased Platelet Activity</td>
<td>243</td>
</tr>
<tr>
<td>Molecular Genetics of Hemostatic Factors Linked to Atherosclerotic Cardiovascular Disease</td>
<td>244</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>244</td>
</tr>
<tr>
<td>Factor VII</td>
<td>244</td>
</tr>
<tr>
<td>Factor VIII</td>
<td>244</td>
</tr>
<tr>
<td>von Willebrand Factor</td>
<td>245</td>
</tr>
<tr>
<td>Antithrombin III</td>
<td>245</td>
</tr>
<tr>
<td>Protein C</td>
<td>245</td>
</tr>
<tr>
<td>Protein S</td>
<td>246</td>
</tr>
<tr>
<td>Tissue Plasminogen Activator</td>
<td>246</td>
</tr>
<tr>
<td>Plasminogen Activator Inhibitor 1</td>
<td>246</td>
</tr>
<tr>
<td>Future Prospects</td>
<td>246</td>
</tr>
<tr>
<td>References</td>
<td>247</td>
</tr>
</tbody>
</table>

Review of the Evidence that Immunogenetic Factors Are Involved in the Etiology of Atherosclerosis
Acton, R.T.; Go, R.C.P.; Roseman, J.M. (Birmingham, Ala.)

Introduction
253
Animal Studies
253

Contents XI
General Risk Factors for Atherosclerosis in Diabetes .. 284
Hyperglycemia ... 284
Hyperinsulinemia ... 285
Abnormal Lipid Profile ... 285
Hypertension ... 286
Obesity ... 287
Specific Risk Factors for Coronary Artery Disease in Diabetes .. 287
Insulin Resistance .. 288
Hemostatic Abnormalities .. 290
Lipoprotein Receptors ... 290
Peptide Growth Factors ... 290
Advanced Nonenzymatic Glycosylation Products ... 291
Hyperestrogenemia .. 291
Role of Genetics in Diabetic Complications ... 291
Population Data ... 291
Clinical Data ... 292
Family Studies ... 292
Genetic Models for Diabetic Macrovascular Disease .. 293
Studies of Specific Genes ... 297
HLA Region on Chromosome 6 .. 297
Insulin Gene on Chromosome 11 ... 297
Apolipoprotein AI-CIII-AIV Gene Cluster on Chromosome 11 ... 298
Apolipoprotein E Gene on Chromosome 19 ... 298
Low-Density Lipoprotein Subclass Patterns ... 299
Lipoprotein (a) .. 299
Summary and Future Studies .. 299
References .. 300

Contents XII

Homocystinuria and Atherosclerosis
Wilcken, D.E.L.; Dudman, N.P.B. (Sydney, N.S.W.) .. 311

Introduction ... 311
Elevated Circulating Homocysteine ... 314
Genetically Determined Homocystinuria and Vascular Disease 314
Cystathionine -Synthase Deficiency ... 315
The Gene ... 315
Re-Methylating Disorders ... 316
Pathology ... 316
Mild Homocysteinaemia and Vascular Disease ... 318
Possible Mechanisms Leading to Vascular Disease ... 319
Established Facts ... 320
Unknowns .. 321
References ..
IV. Genetics

Gene-Diet Interactions in Lipoprotein Metabolism
Dreon, D.M.; Krauss, R.M. (Berkeley, Calif.) ... 325

Introduction ... 325

Low-Density Lipoprotein Receptor in Cholesterol Homeostasis ... 326

Plasma Cholesterol Level and Dietary Fat and Cholesterol Responsiveness 327

Apolipoprotein B ... 329

Hypertriglyceridemia and Diet Responsiveness .. 330

Apolipoprotein B and Diet Responsiveness .. 331

Apolipoprotein E .. 331

Apolipoprotein E and Diet Responsiveness .. 332

Defective High-Density Lipoprotein Metabolism .. 337

Apolipoprotein A and C Polymorphism in Relation to Diet Responsiveness 338

Low-Density Lipoprotein Subclass Patterns ... 338

Hyperinsulinemia ... 339

Low-Density Lipoprotein Heterogeneity and Diet Responsiveness 340

Conclusion ... 341

References ... 342

Molecular Geography of Inherited Disorders of Lipoprotein Metabolism:
Lipoprotein Lipase Deficiency and Familial Hypercholesterolemia
Hayden, M.R. (Vancouver, B.C.); De Braekeleer, M. (Chicoutimi, Que.); Henderson, H.E.
The Flow of Genes -- Molecular Geography

High Gene Frequencies for Disorders of Lipoprotein Metabolism

From France to Quebec: The Story of Lipoprotein Lipase Deficiency

An Ancient Mutation in the Lipoprotein Lipase Gene Predating the Spread of Caucasian Populations

From Bombay to Cape Town: The Origin of the Gly168 ? Glu Mutation in the Lipoprotein Lipase Gene in the Indian Population of South Africa

A Recurrent Mutation in the Lipoprotein Lipase Gene in Persons of Different Ancestries

Familial Hypercholesterolemia: The Origins of the Founder Effect in South African Afrikaners

Origins of Mutations Causing Familial Hypercholesterolemia in French Canadians

Acknowledgments

References

Genetic Markers for Studies of Atherosclerosis and Related Risk Factors

Introduction

Approaches

Biochemical Approach

Candidate Gene Approach

Genetic Marker Approach
Animal Model Approach ... 376
Identification of Polymorphisms ... 376
Restriction Fragment Length Polymorphisms 376
Polymorphisms Not Affecting Restriction Sites 378
Highly Variable Sequences .. 378
Statistical Considerations ... 380
Informativeness of Polymorphisms ... 380
Association and Linkage Analysis .. 383
Candidate Genes .. 385
Chromosomal Organization .. 385
Polymorphisms ... 390
Assessment of Problem ... 390
Appendix .. 393
Acknowledgement .. 413
References .. 413

Identification of New Genes Contributing to Atherosclerosis:
The Mapping of Genes Contributing to Complex Disorders in Animal Models
Warden, C.H.; Daluiski, A.; Lusts, A.J. (Los Angeles, Calif.) 419

Introduction .. 419
The Difficulty of Identifying New Genes for Complex Diseases Using Human Studies 420
Candidate Gene Approach ... 420
Introduction

Atherosclerosis is a disease of large arteries that has fascinated and puzzled physicians and scientists for more than a century. It is the major cause of heart disease and stroke, which together account for more than one third of deaths in Western populations. This volume provides a comprehensive description of our present state of knowledge of the cellular, molecular and physiologic processes underlying atherosclerosis. Because of the interactive nature of many of these processes, it is important to consider them together in attempting to formulate hypotheses concerning the mechanisms underlying atherogenesis. Perhaps the first breakthrough in understanding the basis of the disease came from the work of Carl Miller in Oslo in the 1930s. He demonstrated that the triad of high plasma cholesterol, xanthomas and premature coronary heart disease (CHD) segregated together in families, providing evidence for a genetic component of the disease as well as a molecular link to cholesterol metabolism. The past two decades, in particular, have witnessed major advances in our knowledge of the cellular and molecular determinants of CHD. The molecular details of familial hypercholesterolemia, the disorder studied by Carl Miller, have been established, and a variety of other `major gene' disorders associated with CHD have been at least partially characterized. Pathologic studies have demonstrated the importance of various blood cells as well as artery wall cells in atherogenesis. Epidemiologic studies have shown that high blood cholesterol is a prerequisite for most forms of atherosclerosis.
and have revealed a number of secondary risk factors including hypertension, diabetes, autoimmune disorders and coagulation factor levels. Evidence for an important genetic component in the disease has continued to accumulate, although it is now clear that CHD results from an interaction between genetic and environmental factors. The volume is divided into 4 sections. The first deals with cellular interactions of the artery wall and blood elements involved in atherogenesis. The chapter by Berliner and Gerrity provides a review of the pathology of the disease, including results from studies of animal models as well as humans. The chapter by Territo et al. discusses the growth factors, cellular adhesion proteins, chemoattractants and other molecules likely to be important in mediating the cellular events associated with various stages of the disease. The chapter by Haberland and Steinbrecher focuses on lipoprotein metabolism in the artery wall, including lipoprotein modification and cellular uptake of lipoproteins. The chapter by Kaner and Hajjar reviews evidence for a viral component in the disease and the possibility that some forms of atherosclerosis result from nonmalignant Introduciton XVI

transformation of arterial smooth muscle cells. The chapter by Denver discusses the nature of hemodynamic forces on the artery wall and possible mechanisms by which they may influence atherogenesis. The second section of the volume deals with lipoprotein metabolism. A high level of blood cholesterol in the form of low-density lipoproteins (LDL) can be considered the primary risk factor for the disease. In the absence of severe or moderate hypercholesterolemia,
individuals with `secondary' risk factors such as diabetes, hypertension and smoking, rarely develop CHD. The chapter by Schumaker and Lembertas reviews the metabolism of LDL and very-low-density lipoproteins (VLDL). There has been considerable progress in this area, as several major gene effects have been characterized at the molecular level. The chapter by Karathanasis reviews high-density lipoprotein (HDL) metabolism. Low levels of HDL constitute a major risk factor in atherosclerosis, but in contrast to LDL and VLDL the metabolism of HDL and the mechanism by which HDL protects against atherosclerosis remain largely unknown. The chapter by Doolittle et al. discusses triglyceride metabolism. The relationship of plasma triglycerides to CHD has been a controversial subject, but clearly the metabolism of the triglyceride-rich lipoprotein by lipases and other enzymes contributes importantly to the levels of LDL and HDL. The chapter by Berg reviews one of the major risk factors in CHD, high levels of a lipoprotein called Lp(a). This `mysterious' particle resembles LDL in containing a core of cholesteryl esters and a single molecule of apolipoprotein B100, but in addition it contains a molecule or two of a large and genetically heterogeneous protein designated apo(a). The levels of Lp(a) vary greatly among individuals, and epidemiologic studies have shown that high Lp(a) levels are strongly associated with CHD. The chapter by Davis et al. provides an overview of cholesterol homeostasis, with emphasis on bile acid metabolism. Cholesterol is obtained from the diet and synthesized by many tissues, but it can be removed only by transport to the liver, where it is oxidized to form bile acids. Thus, it's likely that bile
acid synthesis and circulation play a pivotal role in determining the levels of circulating lipoproteins.

The third section of the book deals with 'risk factors' for the disease. These include:

- Hypertension (chapter by Burke and Motulsky);
- Levels of coagulation factors (chapter by Francis);
- Certain autoimmune disorders (chapter by Acton et al.);
- Diabetes (chapter by Shohat et al.);
- And the rare disease homocystinuria (chapter by Wilcken and Dudman). With the exception of homocystinuria, these risk factors are complex and genetically heterogeneous. At present, the mechanisms by which they contribute to atherosclerosis are poorly understood, although many hypotheses have been proposed. Thrombosis is usually the final occlusive event in myocardial infarction or stroke, providing a possible explanation for the involvement of coagulation and thrombolytic factors. It's likely that hypertension, immunologic disorders and homocystinuria affect cells of the artery wall in ways that promote lipoprotein accumulation, monocyte entry or smooth muscle cell proliferation. Diabetes has broad effects on lipoprotein cellular metabolism, although which effects are most relevant to atherosclerosis is unclear. As mentioned above, the processes affecting atherosclerosis are highly interactive, and few of the known risk factors are independent. For example, coagulation and thrombolysis are importantly influenced by diabetes, obesity, inflammatory responses and lipoprotein levels.

The final section of the volume deals with the genetics of CHD. While it's clear that atherosclerosis has important genetic influences, environmental influences (particularly...
diet) are also significant. The differences in the incidence of CHD between Western populations (where the disease is the major cause of death) and most other populations (where CHD is relatively uncommon) appear to result primarily from environmental influences. Thus, Japanese immigrants who adopt a Western life-style have a greatly increased incidence of CHD. Within populations, however, genetic influences appear to predominate. The chapter by Dreon and Krauss reviews the nature of genetic-dietary interactions related to atherosclerosis, a poorly understood but important subject. The chapter by Hayden et al. discusses differences between populations in genes involved in lipoprotein metabolism, a topic of interest not only for understanding population dynamics but also disease diagnosis. The chapter by Mehrabian and Lusis discusses molecular methods for the analysis of CHD. The final chapter by Warden et al. reviews a powerful new approach for analysis of polygenic traits in animal models, an approach which promises to revolutionize understanding of complex genetic diseases.

In conclusion, the processes involved in atherosclerosis are very diverse, and understanding how they contribute to the disease represents a formidable challenge. Nevertheless, the opportunities have never been greater. It is our hope that this volume will be helpful in providing an overview of a large amount of information which must be considered to develop a coherent synthesis for mechanisms involved in the disease.

A.J. Lusis, for the editors