of information
relating to drug therapy and drug reactions, the reader is urged to check the package insert for
each drug for any
change in indications and dosage and for added warnings and precautions. This is particularly
important when
the recommended agent is a new and/or infrequently employed drug.

All rights reserved. No part of this publication may be translated into other languages, reproduced
or
utilized in any form or by any means, electronic or mechanical, including photocopying, recording,
microcopying,
or by any information storage and retrieval system, without permission in writing from the
publisher.

Copyright 1995 by S. Karger AG, P. O. Box, CH-4009 Basel (Switzerland)
Printed in Switzerland on acid-free paper by Thur AG Offsetdruck, Pratteln
ISBN 3-8055-6034-6

Contents

Selective Immunosuppression: Where Are We Now, and Where
Are We Going? A Preface.............................IX

Self-Determinant Selection and Selective Regulation
V. Kumar, E. Sercarz, Los Angeles, Calif.1

Introductory Comments...........................1
Self Determinants, Self Repertoire and Tolerance......................2
Only a Few Self Antigens and Their Determinants May Be Involved in
Autoimmune Pathology................................2
Conserved Stress Proteins Might Be an Important Target in
Autoimmune Pathology................................3
Self-Reactive T Cells Utilize a Limited Set of TCR Variable Genes............4
The Recruitment of a T-Cell Repertoire to Other Determinants
on the Same Antigen as well as on Other Antigens......................4
T Cells with Higher Affinity Receptors May Be Already Tolerized..............5
Regulatory T Cells...............................5
An Equilibrium between Effectors and Regulators May Be
Important in Autoimmunity.............................5
TCR-Based Regulation of EAE..........................6
Antigen-Centered Regulation...........................10
Genetic Unresponsiveness.............................11
Lack of Binding to the MHC................................11
Processing Defect May Lead to Non-Responsiveness...............12
Absence of Critical Residues within CDR3 Constrains T-Cell
Recognition of a Self Antigen..............................12
Susceptibility to MBP-Induced EAE May Correlate with the
Balance between Th1 and Th2 Cells..................................13
Th1 and Th2 Balance May Be Crucial for Autoimmunity.................13
References..15

Selective Targets for Immunotherapy in Autoimmune Disease
X.-D. Yang, R. Tisch, H.O. McDevitt, Stanford, Calif.20

T-Cell Tolerance..20
Central Tolerance..................................20
Peripheral Tolerance................................21
Immune Regulation / Suppression.................................22
Selective Targets for Immunointervention.............................23
Cell Adhesion Molecules..................................23
Cytokines and Cytokine Receptors................................25
T-Cell Receptors......................................26
Antigen-Specific Intervention................................27
Costimulatory Molecules................................28
Concluding Remarks..28
References..29

Immunosuppression in Insulin-Dependent Diabetes mellitus:
From Cellular Selectivity towards Autoantigen Specificity
J.-F. Bach, L. Chatenoud, Paris..............................32

Nonspecific Approaches..33
Immune Modulation..33
Nonspecific Immunosuppression................................35
T-Cell Selective Immunosuppression.............................35
Cyclosporin A..35
FK506, Rapamycin..36
Antilymphocyte Antibodies..................................36
Immunotoxins..37
MHC-Based Therapy...37
MHC Transgenic Mice..37
Anti-MHC Monoclonal Antibodies..............................38
Blocking Peptides..39
T-Cell Receptor-Based Immunointervention.........................39
Selective Immunosuppression of Tumour Necrosis Factor-Alpha in Rheumatoid Arthritis

Cytokine Production in Rheumatoid Arthritis
Cytokine Inhibitors

Contents VI

Immunoregulator Cytokines in Rheumatoid Arthritis
Interleukin-10
Interleukin-4
Transforming Growth Factor-Beta
Chronic Exposure of T Cells to Tumour Necrosis Factor
Concluding Remarks
References

MHC Blocking Peptides and T-Cell Receptor Antagonists:
Novel Paths to Selective Immunosuppression?

Therapeutic Potential of MHC Blocking Peptides
TCR Antagonism: A Promising Alternative
Antagonism versus Tolerance or Anergy
TCR Antagonism: Suggestion of a Model
TCR Antagonist Peptides Inhibit Different T-Cell Lines
EAE: In vivo Application of TCR Antagonists
TCR Antagonists as a Tool to Study Negative Selection
Conclusion
References
Selective immunosuppression is at the frontier of immunological research, and enough is known about the immune system to permit new ideas on immunoregulation to be tested in patients. Several concepts validated in experimental systems are currently being applied in clinical situations: a few pass, some fail, and most are encouraging enough to be submitted for further testing. This is a very interesting time to survey what is happening along the frontier, as sufficient information is now available on basic mechanisms and their clinical applicability to suggest the most promising pathways for future development.

Selective immunosuppression can be induced by a variety of approaches, which could be grouped into two broad categories: approaches directed specifically at autoreactive T cells by targeting the MHC/antigenic peptide/TCR complex, and less-selective approaches targeting a substantial fraction of T cells, including the pathogenic ones.

The first category includes very effective modes of immunosuppression, at least in experimental models. The holy grail is induction of tolerance to the autoantigens as a treatment for human autoimmune diseases. This requires, in principle, knowledge of the autoantigens, still poorly defined in most autoimmune situations, although progress is expected in their identification and characterization. Once the inciting autoantigen has been identified, specific immunosuppression of T cells recognizing it could be induced by exploiting one or more of the mechanisms controlling the peripheral tolerance described in this volume. In this respect, basic research has made considerable advances, but induction of tolerance to the relevant antigen in clinical situations still remains a long-term goal. This category also includes approaches targeting MHC molecules or the TCR. Unfortunately, MHC blockade can only prevent, not treat, autoimmune diseases. In addition, peptides, due to their unfavorable pharmacokinetics, cannot be developed as MHC antagonists. Approaches targeting the TCR itself are also very problematic; the TCR used by human pathogenic T cells is probably too heterogeneous to represent a useful target for immunosuppression. The problems surfacing in the clinical applicability of these approaches definitely represent major challenges for pharmacological development.

In the second category of approaches, very heterogeneous indeed, some strategies have been clinically tested more thoroughly. Among them, some look extremely promising, e.g. TNFα antagonists in rheumatoid arthritis. It is likely that the next generation of immunosuppressive drugs will include several cytokine antagonists, and in particular those able to inhibit, directly or indirectly, the development and function of Th1 or Th2 CD4+ T cells. This underscores the impact on immunotherapy of the current paradigm in Immunology: the Th1/Th2 dichotomy. The subdivision of T cells into Th1 and Th2 subsets can be oversimplified to suggest that most organ-specific autoimmune diseases are Th1 mediated, whereas immediate-type hypersensitivities are Th2
mediated. Although clinical situations are certainly more complex, this paradigm offers the possibility to design straightforward experiments to probe the role of Th1 and Th2 cells in immunoregulation and in the pathogenesis of immunological diseases. It is hoped that tipping the Th1/Th2 balance may offer novel approaches for immunointervention in autoimmune diseases and allergies. In this volume, we are accompanied on the road from basic concepts to clinical applications of selective immunosuppression by leading immunologists, each with a distinct interest in applying the progress of immunological research to the treatment of human diseases. I think their contributions have assembled a very interesting volume, covering many facets and portraying the state of the art in selective immunosuppression. I would like to thank them for sharing their views and their thoughts with us. I also wish to acknowledge the editorial skills of Marianne Fratangelo, and her help in bringing this volume from an idea to a reality.

Luciano Adorini

Preface X