Th1 and Th2 Cells in Health and Disease

Chemical Immunology

Vol. 63

Series Editors Luciano Adorini, Milan
Ken-ichi Arai, Tokyo
Claudia Berek, Berlin
J. Donald Capra, Dallas, Tex.
Anne-Marie Schmitt-Verhulst, Marseille
Byron H. Waksman, New York, N.Y.

KARGER Basel · Freiburg · Paris · London · New York
New Delhi · Bangkok · Singapore · Tokyo · Sydney

Th1 and Th2 Cells in
Health and Disease

Volume Editor S. Romagnani, Florence
17 figures and 9 tables, 1996
KARGER Basel · Freiburg · Paris · London · New York
New Delhi · Bangkok · Singapore · Tokyo · Sydney

Chemical Immunology

Formerly published as 'Progress in Allergy'
Founded 1939 by Paul Kallos
Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus.
Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication.
However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important.
when the recommended agent is a new and/or infrequently employed drug.
All rights reserved. No part of this publication may be translated into other languages, reproduced
or
utilized in any form or by any means electronic or mechanical, including photocopying, recording,
microcopying,
or by any information storage and retrieval system, without permission in writing from the
publisher.

© Copyright 1996 by S. Karger AG, P.O. Box, CH-4009 Basel (Switzerland)
Printed in Switzerland on acid-free paper by Thür AG Offsetdruck, Pratteln
ISBN 3-8055-6241-1

Contents

Preface .. XI

Role of Cytokines in Development of Th1 and Th2 Cells

A. O'Garra, Palo Alto, Calif.; K. Murphy, St. Louis, Mo.............. 1

The Role of Cytokines in T-Helper Subset Development.............. 2

A Reductionist Approach for Analysis of Th1 and Th2 Development from

Naive CD4+ Cells 3

Role of Cytokines and APC.............................. 3

IL-4 Directs Th2 Development.......................... 3

IL-12-Induced Th1 Development Is IFN Dependent.................. 3

Role of Other Cytokines in Directing Th1 Development............ 4

Role of Antigen Dose in Directing T-Helper-Cell Phenotype Development...... 6

Intracellular Signalling in IL-4-and IL-12-Induced Th1 and Th2 Development ... 7

IL-12 Receptor Signalling in Developing cells.......................... 7

References ... 10

Role of Interleukin-12 in Human Th1 Response

G. Trinchieri, Philadelphia, Pa............................ 14

IL-12 Induces IFN- Production in and NK Cells.................. 15

Effect of Th1 and Th2 Cytokines on IL-12 Production............... 17

IL-12 Induces the Generation of Antigen-Specific Human Th1 Cells....... 19

NK Cells Participate in the Mechanisms by which IL-12 Induces Th1 Response ... 20

Analysis of Human Helper Cell Differentiation at the Clonal Level:

IL-12-Induced Priming for High IFN- Production.................. 21

Conclusion... 24

Acknowledgements...................................... 25
References ... 25

Markers of Th1 and Th2 Cells

F. Almerigogna, Pisa; M.M. D’Elios, M. De Carli, G. Del Prête, Florence 30
Differential Expression of Surface Membrane Molecules in Th1 and Th2 Cells ... 31
CD45 Isoform Antigens................................. 31
Adhesion Molecules and Gangliosides..................... 33
Integrins (CD49d)................................. 33
Gangliosides................................. 34
CD7.. 35
MHC Class II and Other Activation Antigens............... 36
Members of the ‘TNF/NGF Receptor/Ligand Superfamily’ 36
Fas and Fas Ligand................................ 37
CD30 Antigen................................... 38
Concluding Remarks and Future Directions............... 45
Acknowledgements..................................... 47
References ... 47
Note Added in Proof................................. 50

Initiation and Regulation of CD4 + T-Cell Function in
Host-Parasite Models

D. Jankovic, A. Shei; Bethesda, Md....................... 51
Cellular Basis of Polarized Cytokine Expression in Parasitic Infections...... 52
Maintenance of Polarized Responses in Established Infection.............. 54
Mechanisms Underlying the Initiation of Polarized Responses in Different
Parasitic Infections.................................. 56
Conclusions... 61
Acknowledgements..................................... 62
References ... 62

Role of Th1 and Th2 Cells in Bacterial Infections

S. Daugelat, S.H.E. Kaufmann, Ulm....................... 66
Listeria monocytogenes................................ 68
Pathogenic Mycobacteria................................. 71
Other Bacteria.. 76
Chlamydia sp...................................... 76
Rickettsia sp...................................... 76
Francisella tularensis................................. 77
Borrelia burgdorferi................................. 77
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yersinia sp.</td>
<td>78</td>
</tr>
<tr>
<td>Legionella Pneumophilia</td>
<td>79</td>
</tr>
<tr>
<td>Bordetella pertussis</td>
<td>80</td>
</tr>
<tr>
<td>Brucella abortus</td>
<td>81</td>
</tr>
<tr>
<td>Salmonella sp.</td>
<td>82</td>
</tr>
</tbody>
</table>

Contents VI

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial Components which Stimulate Th1/Th2 Responses</td>
<td>83</td>
</tr>
<tr>
<td>Concluding Remarks</td>
<td>84</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>85</td>
</tr>
<tr>
<td>References</td>
<td>85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th Cell Development and Regulation in Experimental Cutaneous Leishmaniasis</td>
<td>98</td>
</tr>
<tr>
<td>Immunologic Aspects of Murine Leishmaniasis</td>
<td>100</td>
</tr>
<tr>
<td>Role of Cytokines and the Innate Immune Response in Development of Th Cells</td>
<td>100</td>
</tr>
<tr>
<td>Quantitative Differences Influence Th Cell Subset Development</td>
<td>104</td>
</tr>
<tr>
<td>Route of Parasite Administration Influences Th Cell Subset Development</td>
<td>106</td>
</tr>
<tr>
<td>Influence of the Parasite on Th Cell Subset Development</td>
<td>106</td>
</tr>
<tr>
<td>Immunomodulation of Th Cell Subsets in Leishmaniasis</td>
<td>107</td>
</tr>
<tr>
<td>Conclusions</td>
<td>109</td>
</tr>
<tr>
<td>References</td>
<td>111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Role of Th Cell Subsets in Candidiasis</td>
<td>115</td>
</tr>
<tr>
<td>Host-Protective Immune Responses</td>
<td>116</td>
</tr>
<tr>
<td>Suppression of Host-Protective Immunity</td>
<td>119</td>
</tr>
<tr>
<td>Effector Mechanisms of Th1 and Th2 Cells</td>
<td>122</td>
</tr>
<tr>
<td>Selective Differentiation of Th1 and Th2 Cells</td>
<td>124</td>
</tr>
<tr>
<td>Candida Infections in Different Disease States: Are There Bidirectional Influences?</td>
<td>128</td>
</tr>
<tr>
<td>Summary and Overall Conclusions</td>
<td>130</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>132</td>
</tr>
<tr>
<td>References</td>
<td>132</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th1 and Th2 Cells in HIV Infection</td>
<td></td>
</tr>
</tbody>
</table>
Role of Th2 Cells in Experimental Autoimmune Encephalitis............. 174
Factors which Influence Th Cell Differentiation in Experimental Autoimmune Encephalitis...................................... 175
Direct Measurement of Cytokines in the Cerebrospinal Fluid............. 177
Cytokine Profiles of Cell Lines Generated from the Peripheral Blood 177
Detection of Cytokines in Brain Tissue 179
Conclusions.. 181
References .. 182

Role of Th1 and Th2 Cells in Human Allergic Disorders

IgE Regulation... 187
Eosinophilic Inflammation................................. 188
Human Peripheral Blood Th2 Cells in Atopic Allergic Disease........... 189
Th2 Cells from Tissues in Atopic Allergic Disease................... 190
Evidence from Baseline Allergic Disease......................... 190

Contents VIII

Allergen Challenge... 193
Effects of Treatment... 194
Corticosteroids.. 194
Immunotherapy ... 194
Determinants of Th2 Response to Allergen in Atopy: Potential for Therapy? 195
Genetics and Developmental Factors in Atopy 195
Cytokine Environment..................................... 196
Hormonal Factors... 196
Co-Stimulation... 196
Conclusion.. 197
References .. 197

Molecular and Biological Characteristics of Interleukin-13

J.E. de Vries, Palo Alto, Calif............................... 204
Molecular Characteristics of IL-13............................... 204
The TL-13 Receptor... 205
Production of IL-13.. 206
Effects of IL-13 on Human Cells............................... 207
Effects of IL-13 on B-Cell Phenotype......................... 207
IL-13 Promotes B-Cell Growth and Antibody Production........... 207
IL-13 Induces IgG4 and IgE Production by Human Cells in vitro 207
An optimal host response against different microbial agents requires highly specialized reactions. Viral infections are usually controlled by CD8+ cytolytic lymphocytes. Infections sustained by bacterial, protozoan, fungal or metazoan parasites are primarily challenged by CD4+ helper (Th) cells, inasmuch as these cells are able to mobilize the most appropriate counteraction according to the type of invading agent. For example, combat of extracellular parasites involves production of soluble antibodies which first neutralize invasion and then opsonize parasites for phagocytosis. In contrast, destruction of intracellular parasites requires the activation of macrophages.

The mechanisms by which CD4+ cells can mobilize different types of effector reactions remained unclear until 1986 when Tim Mosmann and Robert Coffman first introduced the concept of Th1 and Th2 cells, based on the different set of cytokines produced. Although the CD4+ Th-mediated response is much more than Th1 or Th2 (what we call ThO cells are indeed a still unexplored, but certainly heterogeneous, family of Th cell subsets), Th1 and Th2 cells represent two extremely polarized forms that markedly helped us to understand why and how the immune system responds to various pathogens. Th1 cells produce cytokines which activate macrophages which are optimal for protection against intracellular bacteria (phagocyte-dependent host response). Th2 cells are proper opponents of bacterial toxins through cytokines that favor B-cell maturation and production of appropriate antibody isotypes. More importantly, Th2 responses are highly toxic to complex microorganisms such as metazoan parasites, and at the same time inhibit macrophage activity, since attempts to destroy large parasites through Th1 responses may be harmful to the host (phagocyte-independent host response).

A combination of Th2- and Th1-type cytokines is optimal for counteracting extracellular bacteria, as antibodies first neutralize invasion and adhesion factors and then opsonize bacteria for phagocytosis.

The concept of Th1 and Th2 cells not only allows one to explain the
different types of protection, but also provides the pathogenic basis for several immunological diseases. Strong evidence suggests that Th2 responses against common environmental allergens are responsible for allergic disorders, whereas Th1-dominated responses are involved in other hypersensitivity reactions, such as contact dermatitis, as well as in the majority of organ-specific autoimmune diseases. Thus, although clinical situations are usually more complex than suggested by either experimental animal models or in vitro studies, this paradigm offers the possibility to design novel approaches for immunointervention in different diseases. Since the concept of Th1 and Th2 cells was introduced, rapid progress in the knowledge of their physiology was achieved. In 1991, my laboratory provided definite evidence that CD4+ Th subsets similar to those described in mice do exist in humans as well. In the subsequent years, it was independently and contemporarily demonstrated in both mice and humans that IL-4 is the critical factor for Th2 cell development, whereas IL-12 is required for Th1 development. More recently, it was found that the peptide ligand density on the antigen-presenting cell and the engagement of co-stimulatory molecules, such as B7 and CD30 ligand, can also influence the type of response. Finally, the existence of surface molecules preferentially or selectively expressed by Th1 and Th2 cells is being demonstrated. For example, CD45R is differently expressed on murine Th1 and Th2 cells and the chain of the IFN- receptor is selectively expressed on murine Th2 cells. Likewise, in human cells the CD30 activation antigen appears to be preferentially expressed by those producing Th2-type cytokines, whereas another activation antigen, LAG-3, is preferentially associated with the production of Th1-type cytokines.

Several critical questions still remain to be answered. What is the relative contribution of the immunogen and of the genetic background in evoking Th1- or Th2-dominated response? What factors other than IL-12 are required for Th1 development? Which is the source of IL-4 required for Th2 development and what factors other than IL-4 are involved? What factors are responsible for intracellular signalling during Th1 or Th2 development? What or how are these polarized response states maintained? Is it possible to change the cytokine profile of established responses?

In this volume, we are accompanied on the road from basic concepts to clinical application of the Th1/Th2 paradigm by outstanding immunologists who provide an interesting 'state of the art' and suggest the next strategies for future research. I am convinced that their contributions have assembled a very interesting volume that will help all of us better understand how to direct immune responses to the type of effector function that would be most useful in eliminating or preventing a given type of infectious disease, and diminishing immunologic tissue damage in autoimmunity and allergy. It is in these very important areas that one anticipates considerable progress in the near future. I would like to thank them for sharing
their views and their interesting thoughts with all other members of the scientific community. Sergio Romagnani

Preface XII