Human Dental Pulp Stem Cells via the NF-κB Pathway

Shensheng Gu Shujun Ran Feng Qin Dong Cao Jia Wang Bin Liu Jingping Liang

Department of Endodontics and Operative Dentistry, Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China and Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China

Key Words
ZBTB20 • HDPSCs • Odontogenic differentiation • Nuclear factor-kappaB

Abstract
Background/Aims: Odontogenic differentiation of human dental pulp stem cells (HDPSCs) is regulated by multiple factors and signaling molecules. However, their regulatory mechanisms are not completely understood. In this study, we investigated the role of Zinc finger and BTB domain-containing 20 (ZBTB20) in odontoblastic differentiation of HDPSCs. Methods: HDPSCs were obtained from human third molars and ZBTB20 expression was examined by qRT-PCR and western blot. Their osteo/odontogenic differentiation and the involvement of NF-κB pathway were subsequently investigated. Results: The expression of ZBTB20 is upregulated in a time-dependent manner during odontogenic differentiation of hDPSCs. Inhibition of ZBTB20 reduced osteogenic medium (OM)-induced odontogenic differentiation, reflected in decreased alkaline phosphatase (ALP) activity, mineralized nodule formation and mRNA expression of odonto/osteogenic marker genes. In contrast, overexpression of ZBTB20 enhanced ALP activity, mineralization and the expression of differentiation marker genes. Furthermore, the expression of IκBα was increased by ZBTB20 silencing in HDPSCs, whereas ZBTB20 overexpression decreased IκBα and enhanced nuclear NF-κB p65. Inhibition of the NF-κB pathway significantly suppressed the odontogenic differentiation of HDPSCs induced by ZBTB20. Conclusion: This study shows for the first time that ZBTB20 plays an important role during odontoblastic differentiation of HDPSCs and may have clinical implications for regenerative endodontics.

Copyright © 2015 S. Karger AG, Basel

Jingping Liang
Department of Endodontics and Operative Dentistry, Ninth People’s Hospital, School of Medicine, Shanghai Jiaotong University, No. 639, Zhizaoju Road, Shanghai 200011 (China); Tel. +86-21-23271699-5282, E-Mail liangjp_health@163.com
Introduction

Human dental pulp stem cells (HDPSCs) are multipotent cells that were originally isolated from adult human dental pulp tissue [1]. These cells are capable of differentiating into multiple cell lineages, including odontoblasts [2], osteoblasts [3], adipocytes [4], chondrocytes [4], myocytes [5] and neuronal cells [4]. DPSCs are thought to possess great therapeutic potential for repairing damaged and/or defective dentinogenesis [6]. However, the lack of detailed understanding of odontoblast/osteoblast-like differentiation of HDPSCs limits their application in dental tissue engineering. Consequently, a better understanding of the molecular mechanisms regulating differentiation of HDPSCs would be of great significance.

Zinc finger and BTB domain-containing 20 (ZBTB20), also termed DPZF, HOF or ZNF288 [7], belongs to a subfamily of zinc finger proteins containing C2H2 Krüppel-type zinc fingers and BTB/POZ domains. It belongs to a class of nuclear DNA-binding transcription factors which are implicated in many developmental processes [8]. ZBTB20 knockout mice display abnormal glucose homeostasis, impaired hormonal responses, and depletion of energy stores, consistent with an energetic deficit [9]. ZBTB20 knockdown in a pancreatic β cell line impairs glucose-stimulated insulin secretion [10]. Furthermore, ZBTB20 regulates nociception and pain sensation in nociceptive sensory neurons [11]. Zhang et al. found that ZBTB20 shares significant homology to ZBTB16, with an overall identity of 30% [12]. Previous studies have demonstrated that ZBTB16 is involved in osteoblastic differentiation of human mesenchymal stem cells (hMSCs) [13]. For example, Ikeda et al. showed that ZBTB16 acts as an upstream regulator of RUNX2 in osteoblastic differentiation of hMSCs [14]. Silencing of ZBTB16 reduced the expression of osteoblast-specific genes such as alkaline phosphatase (ALP), collagen 1A1, RUNX2/CBFA1, and osteocalcin (OCN) in the presence of osteogenic differentiation medium in hMSCs [15]. A recent study demonstrated that, in dental follicle cells, ZBTB16 induces the expression of osteogenic differentiation marker genes [16]. Thus, we hypothesized that ZBTB20 might play similar important roles in odontogenic/osteoblastic differentiation of HDPSCs. Choi et al. found that expression of ZBTB20 increases during odontoblast/osteoblast differentiation of HDPSCs [17]. However, the role of ZBTB20 and its mechanism of action in osteoblastic differentiation remain unclear.

In the present study, we investigated the role of ZBTB20 in odontoblastic differentiation of HDPSCs. Our findings suggest that exogenous ZBTB20 application may induce the odontogenic/osteoblastic differentiation of HDPSCs via activation of the NF-κB signaling pathway.

Materials and Methods

Cell culture

Normal human third molars extracted from adults (18–26 years of age) at Ninth People’s Hospital were used as the source of stem cells. All of the experimental protocols involving human tissues were approved by the Ethics Committee of Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University. Dental pulp stem cells were isolated as described previously [1]. The obtained cells were cultured in alpha-minimum essential medium (α-MEM; Hyclone, Logan, UT, USA) supplemented with 10% FBS, 100 U/mL penicillin, and 100 μg/mL streptomycin in a humidified atmosphere of 5% CO₂. The medium was replaced every 2 days. Cells were subcultured at the ratio of 1:3 until they reached 75–85% confluence. HDPSCs below passage 5 were used in this study. For odontogenic differentiation, osteogenic medium (OM, α-MEM, 10% FBS, 10 mM β-glycerophosphate, 50 mM ascorbic acid, and 0.1 mM dexamethasone) was used to induce differentiation.

RNA extraction and quantitative real-time RT-PCR

Total RNA was isolated using Trizol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. cDNA was synthesized using the PrimeScript RT reagent kit (TaKaRa, Dalian, China). Human alkaline phosphatase (ALP), osteocalcin (OCN), dentin sialophosphoprotein (DSPP), collagen 1 (Col 1) runt-related transcription factor 2 (RUNX2) and ZBTB20 transcripts were quantified by qRT-PCR.
using the SYBR Premix Ex Taq II kit (TaKaRa) and the Applied Biosystems ABI Prism 7500 HT sequence detection system (Applied Biosystems, Foster City, CA, USA). GAPDH mRNA was amplified as an internal control. Expression of mRNA was evaluated by the 2^{-\Delta\Delta C_{\text{T}}}} method. All reactions were run in triplicate.

Measurement of ALP activity and Alizarin red S staining

The activity of ALP was determined with an ALP activity kit (Sigma-Aldrich, St Louis, MO, USA), according to the manufacturer’s protocol. Signals were normalized based on protein concentration [18]. The mineralization of HDPSCs was evaluated by Alizarin Red S staining. At 14 days after OM stimulation, the cells were fixed with 70% ethanol for 10 min, stained with an Alizarin Red Solution (2%, pH 4.2) for 10 min and washed with distilled water to remove the unbound stain. Cultures stained with Alizarin Red S were photographed with a digital camera. Then, cells stained with Alizarin Red were destained with 10% cetylpyridinium chloride in 10 Mm sodium phosphate for 30 min. The mineralization was quantified by measuring absorbance at 562 nm. All experiments were performed in triplicate.

Lentivirus production and transduction

The coding sequences of ZBTB20 and its shRNA were purchased from Hanbio (Shanghai, China), and inserted into pWPI-GFP and pL3.7 vectors, respectively. Lentivirus production and infection were performed as previously described [22]. HDPSCs were infected with recombinant lentivirus-transducing units in the presence of 8 µg/mL polybrene. Cells were assayed 48 h after transfection. Thereafter, the medium was changed to OM. ALP activity was measured 3 and 7 days later, and cultures were stained with Alizarin Red S after 2 weeks.

Immunofluorescence assay

The effect of ZBTB20 on the nuclear translocation of the NF-κB p65 subunit was examined by immunofluorescence assay. At 14 days after OM stimulation, cells were fixed in 4% paraformaldehyde in PBS for 30 min at room temperature. After washing in PBS, cells were incubated in 0.25% TritonX-100 for permeabilization and treated with 10% normal goat serum for 1 h at room temperature. Afterwards, the cells were sequentially incubated with anti-p65 antibody (Cell Signaling Technology, Danvers, MA, USA) followed by fluorescein isothiocyanate (FITC)-conjugated IgG. Nuclei were stained with DAPI for 3 min at room temperature. After washing with PBS, staining was observed using a confocal laser microscope (Carl Zeiss, Oberkochen, Germany) and photographed.

Western blot analysis

Cells were washed with PBS and lysed with lysis buffer (Beyotime, Nanjing, China). To measure the expressions of NF-κB pathway proteins, total protein and nucleoprotein were collected separately as previously described [19]. The protein concentrations of samples were determined using the BCA assay (Pierce, Rockford, IL, USA). Separation of protein bands was performed by 10% SDS-PAGE and proteins were electrically transferred onto a PVDF membrane (Roche, Basel, Switzerland). Membranes were incubated with primary antibodies against ZBTB20 (Sigma), p65 and IκBα (Santa Cruz Biotechnology, Santa Cruz, CA, USA) overnight at 4°C. Lamin-B and β-actin (both from Santa Cruz Biotechnology) were used as markers. After the membranes were incubated with HRP-conjugated secondary antibody for 1 h, protein bands were visualized using an ECL chemiluminescence detection system. Densitometry was analyzed using the ImageJ software program (NIH, Bethesda, MD, USA).

Statistical Analysis

Data are expressed as mean ± SD from three independent experiments and differences among groups were assessed using Student’s two-tailed t test. P < 0.05 was considered significant.

Results

ZBTB20 is upregulated during odontogenic differentiation of HDPSCs

To investigate the expression of ZBTB20 mRNA and protein during odontogenic differentiation of HDPSCs, cells were cultured in OM for 2 weeks, after which samples were
analyzed by qRT-PCR and western blot at day 0, 4, 7, and 14 after induction of differentiation. Results showed that expression of ZBTB20 mRNA and protein was significantly increased throughout this period (Fig. 1A and B), suggesting that ZBTB20 may be important for differentiation of HDPSCs into odontoblasts.

Inhibition of ZBTB20 impairs odontogenic differentiation of HDPSCs

To explore the role of ZBTB20 in odontogenic differentiation of HDPSCs, HDPSCs were transfected with lentiviral constructs containing ZBTB20 shRNA or negative control, and the expression of ZBTB20 was analyzed by western blot (Fig. 2A). These cells were then cultured in OM to induce odontogenic differentiation. We found that ALP activity, one of the earliest markers of odontoblast differentiation, was significantly reduced at 3 and 7 days in HDPSCs with silenced ZBTB20 compared to control cells (Fig. 2B). Consistently, qRT-PCR results showed that the odonto/osteogenic marker genes ALP, OCN, DSPP and Col I were strongly inhibited in ZBTB20-depleted cells at 7 days after induction (Fig. 2C). The key transcription factor RUNX2, which regulates odonto/osteogenic differentiation, was also significantly downregulated at 7 and 14 days after induction in ZBTB20-depleted cells compared to control cells (Fig. 2E). Furthermore, Alizarin red staining revealed that mineralization was significantly lower in cells with ZBTB20 suppression at 14 days (Fig. 2D). These data suggest that ZBTB20 is required for the odontogenic differentiation of HDPSCs.

Overexpression of ZBTB20 promotes odontogenic differentiation of HDPSCs

We further examined the effect of ZBTB20 overexpression on odonto/osteoblastic differentiation of HDPSCs. ZBTB20 overexpressing lentiviruses were transduced into HDPSCs, and overexpression of ZBTB20 was confirmed by western blot (Fig. 3A). The results showed that introduction of ZBTB20 markedly increased ALP activity, odonto/osteogenic marker gene expression and matrix mineralization in ZBTB20-overexpressing HDPSCs compared with negative controls during the odontogenic differentiation process (Fig. 3B–D). These results indicate that ZBTB20 has a promotional effect on HDPSC differentiation into odontoblasts.

ZBTB20 promotes odontogenic differentiation of HDPSCs via activation of the NF-κB pathway

As a transcriptional factor, ZBTB20 may regulate odontogenic differentiation via repression of IκBα, following activation of the nuclear factor-kappa B (NF-κB) pathway [8].
To investigate this, expression of IκBα and p65 were detected by western blot following incubation of HDPSCs silencing or overexpressing ZBTB20 in OM for 48 h. As shown in Fig. 4A and B, ZBTB20 inhibition significantly increased IκBα expression compared to the control cells, while ZBTB20 overexpression decreased IκBα expression and increased nuclear p65. To ascertain whether p65 nuclear translocation occurred following exposure to ZBTB20, an immunofluorescence assay was performed to confirm nuclear localization. The results showed that ectopic ZBTB20 expression caused the translocation of NF-κB p65 from the cytoplasm to cell nuclei. These results suggest that ZBTB20 activates the NF-κB pathway in HDPCs during odontogenic differentiation.

Furthermore, we investigated whether activation of the NF-κB pathway is critical for the induction of odontogenic differentiation by ZBTB20 in HDPSCs. BMS-345541 (a highly selective inhibitor of NF-κB) was used to block the phosphorylation of IκBα and p65 [20-22], following which ALP activity and expression levels of several gene markers of differentiation were assessed. As expected, BMS-345541 significantly inhibited the increase of ALP activity and the mRNA expression of ALP, OCN, DSPP, Col I and RUNX2 induced by ZBTB20 (Fig. 5A–C), indicating the involvement of the NF-κB signaling pathway.
The potential of HDPSCs for use in induction of reparative dentin has been recognized because of their odontogenic differentiation potential [4]. However, the molecular mechanisms underlying their odontogenic differentiation remain unclear. In this study, we show that the transcription factor ZBTB20 is significantly upregulated in a time-dependent manner during odontogenic differentiation. This indicates that ZBTB20 may act as a positive regulator of odontogenic differentiation. Silencing of ZBTB20 reduced ALP activity, mineralization and the expression of differentiation marker genes. In contrast, overexpression of ZBTB20 enhanced OM-induced odontogenic differentiation. Furthermore, we show that the NF-κB pathway is critical for ZBTB20-mediated odontoblastic differentiation of HDPSCs. This is the first study to characterize ZBTB20 regulation in HDPSCs and to identify ZBTB20 as one of the critical factors in odontogenic differentiation.

ALP provides a source of inorganic phosphate for hydroxyapatite formation, which is required for the proper mineralization of bone [23]. ALP knockout mice exhibit defects in bone mineralization [24], demonstrating that ALP is an important early-stage marker of osteoblast/odontoblast differentiation. OCN is one of the major noncollagenous proteins
gu et al.: zbtb20 regulates odontogenic differentiation of hdpSCs

specific to mineralized connective tissues of vertebrates [25], while DSPP and Col I have been reported to be highly expressed in odontoblasts and essential for dentinogenesis [26, 27]. OCN, DSPP and Col I mainly appear during the late stages of odontoblastic differentiation.

fig. 4. Effects of ZBTB20 inhibition and overexpression on the NF-κB pathway during HDPSC differentiation. HDPSCs with ZBTB20 inhibition or overexpression were incubated in OM for 60 min. (A) Expression of IκBα was determined by western blot. Protein levels were normalized as a ratio to β-actin after densitometric quantification and presented as fold change relative to the control group. (B) Expression of nuclear NF-κB p65. Lamin-B was used as an internal control. (C) Nuclear localization of NF-κB p65 was detected by immunofluorescent staining.

fig. 5. Inhibition of ZBTB20-induced odontogenic differentiation by BMS-345541. Cells were cultured in OM with or without BMS-345541 (1 μmol/L). (A) ALP activity was measured at 3 and 7 days. (B) The mRNA levels of ALP, OCN, DSPP, Col I and RUNX2 were detected by qRT-PCR at 7 days. *P < 0.05 vs. control group, #P < 0.05 vs. ZBTB20 group.
Additionally, studies have suggested that the transcription factor RUNX2 is involved in osteoblast and odontoblast differentiation at the early and later stages [28, 29]. To assess the role of ZBTB20 in odontoblastic differentiation of HDSPCs, we examined the effects of ZBTB20 inhibition and overexpression on the expression of key differentiation markers. Our results indicate that ZBTB20 inhibition significantly downregulates ALP activity, mineralized nodule formation, and the expression of early and late odontoblastic differentiation markers, including ALP, OCN, DSPP, Col I and RUNX2. Furthermore, ZBTB20 overexpression increases OM-induced odontoblastic differentiation. Our results are consistent with the finding in a recent study that ZBTB20 is high expressed in hypertrophic chondrocytes and that deletion of ZBTB20 in developing cartilage results in delayed endochondral ossification and postnatal growth retardation [30].

The NF-κB pathway has been reported to be extensively involved in differentiation of osteoblasts and odontoblasts [31, 32]. For example, Hess et al. showed that enhanced NF-κB activity in human mesenchymal stem cells increases osteogenic differentiation [33]. Li et al. reported that NF-κB pathway-activated human stem cells from apical papilla exhibit higher proliferative activity, together with enhanced odonto/osteogenic ability [34]. IκBα protein is the major inhibitor of the NF-κB pathway. In its inactive state, NF-κB protein binds to IκB family proteins (most importantly the IκBα protein) in the cytoplasm. Upon activation of the NF-κB pathway, IκBα is phosphorylated, ubiquitinated and degraded, which releases NF-κB to translocate to the nucleus and activate transcription of NF-κB-regulated genes [35, 36]. A recent study showed that ZBTB20 specifically binds to the IκBα gene promoter, repressing IκBα gene transcription, and inhibits IκBα protein expression, thus promoting NF-κB activation [8]. In light of this, we next investigated whether ZBTB20 influenced the expression of IκBα and p65. We found that ZBTB20 overexpression significantly reduced IκBα expression and increased nuclear p65 during odontogenic differentiation, suggesting that ZBTB20 influences HDSPC differentiation through the NF-κB pathway. This finding was further supported by the fact that BMS-345541 blocked ZBTB20-induced ALP activity, mineralized nodule formation, and activation of ALP, OCN, DSPP, Col I and RUNX2. These data indicate that the NF-κB pathway is involved in the ZBTB20-mediated regulation of odontogenic differentiation of HDSPCs.

In summary, our results demonstrate that ZBTB20 promotes the odonto/osteogenic differentiation of HDSPCs, at least in part, through activation of the NF-κB pathway. This suggests that ZBTB20 may be a novel and important modulator of HDSPC differentiation, and could be useful in dental tissue regeneration and tissue engineering.

Acknowledgments

This study was funded by The National Natural Science Foundation of China (No. 81300865).

Disclosure Statement

None declared.

References

Erratum

In the article by the authors: Gu et al., entitled “Human Dental Pulp Stem Cells via the NF-κB Pathway” [Cell Physiol Biochem 2015;36:1725-1734 (DOI: 10.1159/000430145)], there is an error in title.

The correct title is reproduced here:

"ZBTB20 regulates odontogenic differentiation of human dental pulp stem cells via the NF-κB pathway"

The authors sincerely apologize for this error.