Tourette Syndrome: Bridging the Gap between Genetics and Biology

Petra Richer a Thomas V. Fernandez b

a The University of the South, Sewanee, Tenn., and b Yale Child Study Center and Department of Psychiatry, Yale University School of Medicine, New Haven, Conn., USA

Key Words
Common variant · Copy number variation · Dopamine · Genetics · Genome-wide association study · Glutamate · Histamine · Linkage analysis · Neurotransmitters · Rare variant

Abstract
Tourette syndrome is a childhood neuropsychiatric disorder, which presents with disruptive motor and vocal tics. The disease also has a high comorbidity with obsessive-compulsive disorder and attention deficit hyperactivity disorder, which may further increase the distress experienced by patients. Current treatments act with varying efficacies in alleviating symptoms, as the underlying biology of the disease is not fully understood to provide precise therapeutic targets. Moreover, the genetic complexity of the disorder presents a substantial challenge to the identification of genetic alterations that contribute to the Tourette phenotype. Nevertheless, genetic studies have suggested involvement of dopaminergic, serotonergic, glutamatergic, and histaminergic pathways in the pathophysiology of at least some cases. In addition, genetic overlaps with other neuropsychiatric disorders may point toward a shared biology. The findings that are emerging from genetic studies will allow researchers to piece together the underlying components of the disease in the hopes that a deeper understanding of Tourette syndrome can lead to improved treatments for those affected by it.

Introduction

Tourette syndrome (TS) is a neuropsychiatric disorder characterized by combinations of motor and vocal tics that persist for longer than 1 year [1]. The presentation of motor tics can be categorized as either simple or complex, with simple tics generally involving only one muscle group, such as blinking or twitching of the nose [2, 3]. Complex tics tend to require multiple muscle groups and can be a sequence of movements or a combination of simple tics [2]. Examples include grimacing combined with twisting of the head, kicking, or spinning around [3]. Vocal tics often arise after the onset of motor tics and can also be divided into simple and complex [3]. Simple vocal tics are the production of various sounds and noises, such as throat clearing, coughing, or sniffing [3]. Complex vo-
Tourette Syndrome Genetics

Mol Neuropsychiatry 2015;1:156–164
DOI: 10.1159/000439085
mum theoretical logarithm of the odds score [40]. The W317X abnormality resulted in a mutant form of the histidine decarboxylase (HDC) enzyme, lacking an essential portion of its active domain, which is responsible for catalyzing the synthesis of histamine from histidine [40]. To date, this mutation has not been found in other TS-affected or unaffected individuals outside of this family. However, its discovery, for the first time, added histaminergic neurotransmission to the list of possible mechanisms involved in the biology of TS and prompted a clinical trial of an H3 receptor antagonist, AZD5213, in adolescents with TS (ClinicalTrials.gov ID: NCT01904773); subsequent support for a ‘histamine hypothesis’ came from a European family-based association study, a study of copy number variation (CNV) in TS [41], and animal models [42–44].

Candidate gene association studies have tested TS cases and control subjects for single nucleotide polymorphisms (SNPs) in candidate genes that are chosen based on hypotheses of plausible biological pathways [39, 45]. These include dopamine (DA) receptors, transporters, and catabolizing genes, serotonergic genes, and noradrenergic transcripts [46–57]. Although the low cost of examining only a few specific variants is appealing, the a priori probability that these variants will play a role in conferring risk for the disease is low, and sample sizes have generally been inadequate. Consequently, studies to date have produced varying results with nonsignificant or nonreproducible findings [39, 45].

Chromosomal abnormalities have been studied to determine which regions of the genome may have alterations as a result of deletions, duplications, translocations, or inversions. Areas affected by these variations can highlight candidate regions and genes to be examined in the context of TS. IMMP2L was implicated in a Danish TS cohort of 188 patients, where Bertelsen et al. [58] identified an increase in small intergenic deletions. Three separate studies also found abnormalities in chromosome 18q22, where breakpoints near the IMMP2L gene were observed [59–61]. The CNTNAP2 gene was also discovered to have rearrangements in one TS family, while another family had a translocation affecting the gene, but with no symptoms [62, 63]. CNTNAP2 has also been implicated in autism spectrum disorders (ASD), schizophrenia, and intellectual disability, and it is believed to be involved in ion channel distribution along the axon as well as in interactions between neurons and glial cells [62, 64]. A small, transmitted exonic deletion was observed in NLGN4X, also involved in ASD, in a family with TS, motor tics, autism, learning problems, anxiety, and depression [65–67]. Prouneta et al. [68] identified a disrupted locus of DPP6 in a son and father with TS. The gene has also been connected to ASD pathogenesis and neuroleptic-induced dyskinesia.

Lastly, the study of a family with 1 case of TS highlighted a de novo inversion on chromosome 13, which caused a breakpoint at 13q31, 350 kb away from the gene SLITRK1 (Slit and Trk-like, Family Member 1) [69]. This same study examined 174 unrelated TS patients and found a frameshift mutation, resulting in a truncated protein in 1 TS and 1 trichotillomania patient [69]. Furthermore, this study identified a rare single base pair change, var321, at a regulatory micro-RNA-binding site in the SLITRK1 3′ UTR. This finding had a significant association with TS (p = 0.0056) [70]. Several subsequent studies have examined the association of SLITRK1 with TS by resequencing probands but did not locate additional pathogenic coding frame mutations in the gene [71–73] or did not find an association for the specific var321 [74, 75]. On the other hand, significant associations have been reported between var321 and TS [76, 77] or trichotillomania [78]. These results must be interpreted with caution, as studies examining the association between variants in SLITRK1 and TS to date have been relatively small and generally lacking sufficient power to conclusively confirm or refute an association. Further studies involving much larger TS cohorts and employing the latest genomic technologies will be needed to clarify the contribution of variation in and around SLITRK1 toward TS disease risk.

Little is known about its function; however, SLITRK1 is believed to enhance expression during development to promote axon path finding, while it is also highly expressed in cholinergic neurons of the striatum throughout the lifespan [79]. In vitro studies have determined that SLITRK1 promotes dendritic growth, while dendritic regression results from TS-associated alleles [69]. A SLITRK1 knockout (KO) mouse model presented with anxiety as well as increased noradrenergic activity; however, no tic-like movements were observed [80]. Technological advances and a decline in genotyping costs have allowed studies to better investigate genetic susceptibility to TS across the genome [81]. In contrast to candidate gene association studies, genome-wide association studies (GWAS) do not require preselection of genomic regions, performing individual comparisons to analyze the combined effect size of SNPs on disease susceptibility [45, 82]. However, there is a high genome-wide statistical significance threshold (p < 5 × 10^-8) to confirm a disease locus due to the large number of comparisons [83]. With
the modest effect sizes seen for common variants in complex genetic disorders (~1.1), large sample sizes are generally required to achieve a statistically significant signal. The one TS GWAS published to date (1,496 cases and 5,249 controls) has not pinpointed a statistically significant TS locus [83]. However, some sub-threshold GWAS peaks may still signal the involvement of variants fundamental to TS pathophysiology [84]. In the TS GWAS, Scharf et al. [83] found COL27A1 on chromosome 9q32 to have a strong association with TS (p = 1.85 × 10^−6). Furthermore, Paschou et al. [84] examined a top region from this GWAS in 609 cases and 610 controls and identified a single intergenic SNP (rs2060546) near the gene NTN4 that was associated with TS; this finding remained statistically significant after Bonferroni correction. NTN4 is believed to code for an axon guidance molecule in the developing striatum, an area implicated in the pathophysiology of TS. A study conducted by Sundaram et al. [92] found a single intergenic SNP (rs2060546) near the gene NTN4 that was associated with TS; this finding remained statistically significant after Bonferroni correction.

The study of CNVs has been made practical through the advent of affordable and high-resolution microarray technology, which can detect structural variants in DNA [85]. While CNVs occur in the general population, studies have examined whether the burden of rare and de novo CNVs is greater in individuals with complex disorders, like TS [86, 87]. Although no significant difference between cases and controls has been reported in TS thus far, the identified CNVs may implicate certain genes in TS. A study conducted by Sundaram et al. [88] examined 111 cases and 73 controls, finding rare recurrent CNVs in NRXN1 and CTNNA3, which are thought to play a role in ASD and schizophrenia. Large CNVs found by Nag et al. [89] in a study of 179 TS patients and 234 controls also highlighted NRXN1 as a possible TS gene, along with COL8A1. Moreover, Fernandez et al. [90] reported disruptions in histamine signaling and GABA receptor genes during an investigation of CNVs in 460 TS and 1,131 control subjects. In addition, a study examining 1,086 TS, 1,613 OCD, and 1,789 control subjects detected large deletions in 16p13.11 for 5 participants; however, the evidence for association was stronger for OCD than TS [91].

More recently, whole-exome and whole-genome next-generation sequencing have become increasingly popular options for the study of complex disorders, especially as declining costs allow greater availability for their use in research. Exome sequencing of a 3-generation pedigree with 7 TS-affected members revealed single nucleotide variants in three genes, MRPL3, DNAJC13, and OFCC1, which have not yet been implicated in other studies [92]. Hooper et al. [93] performed whole-genome sequencing on a single individual with TS and comorbid OCD, discovering a translocation at (6;22)(q16;p13). This alteration caused a 400-kb deletion in 6q16, affecting GPR64, NDUFA4, and KLHL32 [93]. While these 2 published studies have applied next-generation sequencing in only a small number of patients to date, larger-scale exome sequencing studies in parent-child trios are currently underway. If such studies reveal an increase in de novo mutation burden, similar to findings in autism and schizophrenia, this approach will be very likely to lead toward gene discovery in TS. Such studies can provide insight into how changes in protein-coding and even regulatory regions have an effect on TS risk, leading us toward the ultimate goal of gaining a deeper understanding of the underlying biology to inform interventions with greater efficacies. Thus far, genetic studies have shown some overlap with findings from other research approaches (e.g. brain imaging and pharmacological studies), pointing us toward the involvement of certain neurotransmitter systems and implicating brain regions suspected to be involved in TS pathophysiology.

Pathophysiology

The cortico-striato-thalamo-cortical circuit has been implicated in the biology of TS due to its involvement in movement initiation and inhibition [94]. The striatum has been a particular region of interest in research, with studies indicating that deficits of striatal pathways contribute to TS etiology [43, 95–100]. A PET study examining 18 TS patients and 16 controls found that the ventral striatum was significantly affected, since the activation of the ventral striatum corresponded with motor cortical area activation in TS patients [100]. On the other hand, healthy individuals demonstrated a negative correlation in activity between the two areas [100]. The aforementioned cortico-striato-thalamo-cortical pathways require various neurotransmitters (glutamate, DA, GABA, and serotonin) for signal transduction, and previous studies have reported abnormalities in these systems in TS [95–98, 101–105]. Most recently, the histaminergic pathway has also been added to the list of potentially malfunctioning systems in the disorder [40, 90].

Genetic studies in TS are beginning to show agreement with imaging, animal models, and pharmacological findings, and the hope is that these convergences will provide a more complete understanding of TS pathophysiology. The dopaminergic system has been an area of interest since dopamine antagonists (e.g. risperidone, pimozide, and haloperidol) have been used to attenuate...
tics [11]. Singer et al. [97] found an upregulation of DA receptors in the postmortem striatum of TS patients compared to unaffected controls, indicating a decrease in extracellular DA. In addition, studies have detected an association between TS and certain SNPs in the gene encoding the dopamine receptor D2 (DRD2); however, the results are based on small cohorts [49, 103, 106]. Other studies have not been able to find connections between the DA receptor and TS [107, 108]. Nonetheless, some research examining the dopamine transporter 1 (DAT1) gene (SLC6A3) converge to support its involvement in TS biology, strengthening the view that the dopaminergic system plays a substantial role in the disease [47, 50, 109].

In the serotonergic pathway, tryptophan hydroxylase (TPH2) has been of interest to study, since it acts as the rate-limiting enzyme in serotonin synthesis [110]. To date, Mössner et al. [56] have identified intronic SNPs (rs4565946, rs4570625) in the TPH2 gene during a study of 98 TS patients and 178 controls. On the other hand, serotonin receptor genes have not been able to provide significant findings and require more extensive study [111, 112]. Similarly, research focusing on the serotonin transporter (SERT) gene (SLC6A4) has provided varying results [53, 113], although a recent finding by Moya et al. [114] highlights the association of a high-expression variant and a rare gain-of-function variant of the gene with TS.

Recently, the glutamatergic pathway has also garnered attention in the understanding of TS biology due to its role in OCD, where malfunctioning neurotransmission of glutamate has been studied [115]. Due to the high comorbidity of TS with OCD, indications for a shared genetic and pathophysiological background have been examined. SLC1A3 (Solute Carrier, Family 1, Member 3), a gene related to a supported OCD candidate gene (SLC1A1), was investigated by Adamczyk et al. [116] in the context of TS. Although a functional missense variant was overrepresented in affected individuals, it was not statistically significantly different from controls [116]. In addition, the SAP90/PSD95-associated protein 3 (SAPAP3/DLGAP3), involved in synaptic scaffolding, has been a candidate area of research, as it is present in the glutamatergic synapses of the striatum [117]. As a result, Crane et al. [117] studied 289 TS trios and determined a nominally significant genetic association between DLGAP3 and TS. Moreover, DLGAP3/SAPAP3 KO mice have demonstrated OCD-like behaviors, such as compulsive grooming and anxiety, along with excitatory synaptic dysfunction in the striatum [118, 119].

The findings of Erkan-Sencicek et al. [40] on HDC shed light on the involvement of the histaminergic pathway in TS etiology and its connection to the disease phenotype. Histamine is normally involved in smooth muscle contractions and neurotransmission; however, disturbances in its synthesis by HDC can have detrimental effects [120]. Ohtsu et al. [121] examined HDC KO mice and found that they exhibited a 50% decrease in brain histamine levels, reinforcing the enzyme’s role in histamine synthesis. A more recent HDC KO mouse model also observed a decrease in histamine, but also discerned an increase in DA, along with elevated D2 and D3 receptor density in the substantia nigra [42]. Additionally, increased motor stereotypies were observed with the KO mice, which could be diminished through the administration of haloperidol, a D2 agonist [42]. Individuals affected with the W317X mutation, which causes the production of an abnormal HDC, also present with an increase in D2 and D3 receptors in the same region [42]. These new findings suggest novel therapeutic approaches to treat the disorder, while reinforcing the importance of genetic studies in elucidating the underlying mechanisms that characterize TS.

Discussion and Future Directions

The intricate phenotype and biological mechanisms underlying TS, along with the need for treatments with greater efficacy, have been an impetus for understanding the genetic basis of the disease. In retrospect, early studies did not adequately account for the genetic complexity of TS, and its heterogeneity is becoming evident as research in the field progresses. Nevertheless, some studies are beginning to strengthen support for the involvement of dopaminergic, glutamatergic, and serotonergic systems in the pathophysiology of TS. Most recently, the histaminergic pathway has been included as a new target of research and, possibly, treatment. The genetic overlap between TS and other neuropsychiatric disorders, most notably ASD, may also shed light on shared mechanisms amongst the diseases [88, 90, 91]. For the most part, many genetic findings in TS to date have not reached statistical significance or lack reproducibility. Studies now underway seek to utilize larger cohorts and high-throughput sequencing to garner support for specific genes and biological pathways in TS [122–124]. There is great hope that these new studies will accelerate progress in understanding TS so that we can improve the lives of those suffering from this debilitating disorder.
Tourette Syndrome Genetics

Acknowledgements

Research reported in this publication was supported by the National Institute of Mental Health of the National Institutes of Health under Award Number K08MH099424 (TVF). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Statement of Ethics

The authors have no ethical conflicts to disclose.

Disclosure Statement

T.V.F. receives research funding from National Institute of Mental Health (NIMH), the Simons Foundation, Allison Family Foundation, and Shire. P.R. has no disclosures.

References

Mol Neuropsychiatry 2015;1:156–164
DOI: 10.1159/000439085

161

