Vasoactive Intestinal Peptide for Diagnosing Exacerbation in Chronic Obstructive Pulmonary Disease

Jyotshna Mandal, Michael Roth, Luigi Costa, Lucas Boeck, Janko Rakic, Andreas Scherr, Michael Tamm, Daiana Stolz

Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital Basel, and Pulmonary Cell Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland

Key Words
Chronic obstructive pulmonary disease · Acute exacerbation · Serum vasoactive intestinal peptide · Diagnostic biomarker

Abstract

Background: Vasoactive intestinal peptide (VIP) is the most abundant neuropeptide in the lung. VIP has been linked to pulmonary arterial hypertension and hypoxia. Objectives: We aimed to assess circulating VIP levels at exacerbation and at stable chronic obstructive pulmonary disease (COPD) and to evaluate the diagnostic performance in a well-characterized cohort of COPD patients. Methods: The nested cohort study included patients with Global Initiative for Chronic Obstructive Lung Disease stage II–IV. Patients were examined at stable state and at acute exacerbation of COPD (AE-COPD), and dedicated serum was collected at both conditions. Serum VIP levels were determined by enzyme-linked immunosorbent assay. Diagnostic accuracy was analyzed by receiver operating characteristic curve and area under the curve (AUC). Results: Patients with acute exacerbation (n = 120) and stable COPD (n = 163) had similar characteristics at baseline. Serum VIP levels did not correlate with oxygen saturation at rest (p = 0.722) or at exercise (p = 0.168). Serum VIP levels were significantly higher at AE-COPD (130.25 pg/ml, 95% CI 112.19–151.83) as compared to stable COPD (40.07 pg/ml, 95% CI 37.13–43.96, p < 0.001). The association of increased serum VIP with AE-COPD remained significant after propensity score matching (p < 0.001). Analysis of the Youden index indicated the optimal serum VIP cutoff value as 56.6 pg/ml. The probability of AE-COPD was very low if serum VIP was ≤35 pg/ml (sensitivity >90%) and very high if serum VIP was ≥88 pg/ml (specificity >90%). Serum VIP levels presented a robust performance to diagnose AE-COPD (AUC 0.849, 95% CI 0.779–0.899). Conclusions: Increased serum VIP levels are associated with AE-COPD.

Introduction

Chronic obstructive pulmonary disease (COPD) is a major global health problem [1] and is the fourth leading cause of death in the world, claiming 3 million annual deaths worldwide [2, 3]. Exacerbations are the most frequent cause of hospitalization for COPD patients [4]. They are commonly defined as ‘an event in the natural course of the disease characterized by a baseline change in the patient’s dyspnea, cough, and/or sputum that is be-
obtained from patients with COPD and pulmonary arterioles, as compared to smokers without COPD [22]. An increase in VIP was reported in the patients’ epithelium, while it was downregulated in their airway smooth muscle cell layer as compared to smokers without COPD [22]. A similar increase in VIP was reported in arterial serum samples obtained from patients with COPD and pulmonary arterial hypertension (PAH) [23].

In human bronchial epithelial cells VIP supported wound healing through the cAMP response element-binding protein (CREB) [24]. Such beneficial effects of VIP on bronchial and alveolar epithelial cells were supported by animal models, where VIP protected against oxidative stress via a second transcription factor, the signal transducers and activators of transcription 3 (STAT3) [25]. Furthermore, application of VIP prevented hyperoxia-induced pathologic lung function and tissue structural changes in rats [26]. Together these results suggest that VIP is regulated and functions in a cell type-specific manner, with a beneficial effect on the regeneration and function of bronchial epithelium. Thus, circulating VIP levels may indicate active inflammation and wound repair in the bronchus and may be useful as an early biomarker of exacerbation in COPD. Recently, attention has been directed towards the therapeutic potential of VIP for the treatment of COPD, as it acts as a neurotransmitter and has anti-inflammatory properties [27].

In this study we investigated serum VIP levels in dedicated samples at AE-COPD and stable state in a well-characterized cohort of COPD patients. The accuracy of serum VIP for the diagnosis of exacerbation in COPD was also evaluated.

Subjects and Methods

Study Design and Patients

The ‘Predicting Outcome Using Systemic Markers in Severe Exacerbations of Chronic Obstructive Pulmonary Disease’ (PROMISE-COPD) was a multicenter study, from November 2008 to October 2011, done to evaluate the potential variables associated with poor outcomes in moderate to very severe COPD patients. COPD was defined as post-bronchodilator FEV1/FVC <70% and FEV1 <80% predicted, i.e. Global Initiative for Chronic Obstructive Lung Disease (GOLD) grade II–IV airway obstruction [28].

The study was designed to be inclusive, exploratory and hypothesis-generating. It was specifically drafted to identify predictors of outcome using systemic markers in COPD. In this analysis, a nested, predefined cohort of 241 patients (at stable state and followed up longitudinally) from Basel, Switzerland was included. It was performed according to the PROBE (prospective specimen collection, retrospective blinded evaluation) standards [29]. The expected follow-up period was 5 years. All enrolled patients had an initial baseline examination at stable state and were followed up for at least 2 years in scheduled half-yearly visits. Blood samples were collected at both stable state and at exacerbation for the purpose of this analysis. When necessary, patients made outpatient visits or were hospitalized for treatment of AE-COPD, and follow-up visits were performed 4 weeks after the latest exacerbation. The inclusion criteria were: (1) at baseline: clinically stable, moderate to very severe COPD (stages II–IV, according to the GOLD classification) [1] based on anamnesis, physical examination and spirometry ≥4 weeks after the latest exacerbation; (2) age ≥40 years; (3) smoking history ≥10 pack-years. The exclusion criteria were: (1) main respiratory disorder such as asthma, bronchiectasis or pulmonary fibrosis; (2) other fatal disease; (3) immunosuppression, including AIDS, organ transplantation or current chronic...
steroids (>20 mg prednisolone per day); (4) neuromuscular or musculoskeletal disorder preventing walking.

Throughout the study period, patients were treated as clinically warranted, without restriction. They were monitored for recurrent moderate (requiring treatment with systemic corticosteroids, antibiotics or both) and severe AE-COPD (requiring hospitalization or a visit to the emergency department).

The PROMISE-COPD, an investigator-initiated and -driven study, complying with the Helsinki Declaration and Good Clinical Practice Guidelines, was approved by the participating centers' ethics committees (EKBB 295/07) and was registered at www.controlled-trials.com (identifier ISRCTN99586989). All patients provided prior written consent for the study assessments.

Baseline and Scheduled Visit Assessments
For all patients, we performed a physical examination, registered vital signs and obtained a detailed medical history, which included their demography, smoking status, disease duration, current treatment as well as number and severity of exacerbations in the previous year. From the data the age-adjusted Charlson Comorbidity Index score was calculated. We also obtained plasma samples for measurement of biomarkers and spontaneous sputum samples for quantitative bacterial culture. Physical examinations, spirometry and 6-minute walking tests were performed by qualified personnel according to the guidelines of the American Thoracic Society [30]. Each patient completed the Modified Medical Research Council (MMRC) scale, the St. George’s Respiratory Questionnaire, COPD version and the Short Form 36 health-related quality of life questionnaire. All examinations took place at each scheduled visit (semi-annually), except for the 6-minute walking tests.

Presence of PAH was defined as systolic pulmonary pressure >35 mm Hg within 6 months of baseline and determined by echocardiography.

Outcome Assessment
At the 2-year follow-up, the vital status of each patient was confirmed and, if required, by relatives, family physicians, medical insurance companies, by checking medical records, hospital databases or public registries. These methods were also used to determine the dates and causes of death, if any. Death dates that were undetermined were imputed to the halfway point between the last study visit and the date when the investigator learned about the death.

Unscheduled Visits during Exacerbation
Exacerbation was defined as an acute change from baseline in one or more of dyspnea, cough and sputum, beyond normal day-to-day variation and possibly warranting change in medication. Visits derived from exacerbation were classified as unscheduled visits. Severe exacerbation was defined as the patients having to be admitted to the hospital for treatment [1]. Spontaneously expectorated sputum samples were obtained and examined using standard techniques [31]. Sputum microbiology was performed and good sputum quality was defined as <25 epithelial cells in 100× augmented sputum. Patients were asked to report to or call the study center on worsening of respiratory symptoms. Chest radiography and electrocardiography were performed at the discretion of the attending physician to exclude other respiratory and cardiac pathologies. 71.6% (n = 86) of the patients had either a chest X-ray or CT scan performed. Electrocardiography was obtained in 13.3% (n = 16) of the patients.

AE-COPD patients were categorized as type 1 (severe with dyspnea, sputum volume and sputum purulence), type 2 (moderate with any two of the above three main symptoms) and type 3 (mild with any one of the three main symptoms) based on Anthonisen’s classification of COPD exacerbation [32].

VIP Enzyme-Linked Immunosorbsent Assay
Blood samples for VIP measurement were collected on the scheduled (stable state of the disease) and unscheduled visits (AE-COPD) of each patient into Vacutainer tubes through an indwelling venous catheter. Serum was collected after centrifugation (3,000 g, 10–15 min, 4°C) and was immediately fast-frozen at −80°C for analysis. In addition, serum samples were drawn at the same visit and processed routinely.

VIP enzyme-linked immunosorbent assay (VIP-ELISA) was performed with fast-frozen samples (n = 241) and routinely processed serum samples (n = 20) according to the manufacturer’s instructions, with a detection range of 15.6–1,000 pg/ml and <3.9 pg/ml sensitivity (Cusabio Biotech Co., Ltd., China). VIP-ELISA was also performed in serum samples obtained from healthy blood donors (n = 30) and used as the reference value of serum VIP ranging from 20 to 22 pg/ml. All serum samples were assayed in duplicate, in a single run by personnel unaware of the patients’ clinical data.

Statistics
Continuous variables are expressed as mean ± SD or median (interquartile range: 25th to 75th percentile) and discrete variables as percentage. Baseline characteristics were compared between patients with stable COPD and AE-COPD by Mann-Whitney U test or Student’s t test, as appropriate. All tests were two-tailed and p values <0.001/0.05 were defined as significant. All statistical analyses were performed using SPSS (version 22.0 for Macintosh, IBM, Switzerland). The longitudinal change in the VIP level in paired samples (n = 30 and n = 24; stable and exacerbated COPD) was analyzed by a non-parametric, paired test (Wilcoxon test). The MedCalc software (version 15.2, Belgium) was used for calculating sensitivity, specificity, negative likelihood ratio and positive likelihood ratio. The diagnostic accuracy of the serum VIP level for AE-COPD was evaluated using receiver operating characteristic (ROC) analysis and area under the curve (AUC).

Propensity Score Matching
In order to compare study groups the data were adjusted for additional covariates by propensity score adjustment. Adjusted variables included all lung function as well as clinical and demographic characteristics as depicted in table 1.

The difference in serum VIP between the study groups (stable group, mild to moderate AE-COPD group and severe COPD group) was calculated using a regression model with the propensity score as an additional covariate [33].

Results
Patient Characteristics
The study design according to the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines and patient disposition is summa-
Table 1. Characteristics of 241 patients included in the predefined VIP nested cohort at baseline (stable state)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>VIP nested cohort (n = 241)</th>
<th>Stable (n = 163)</th>
<th>AE-COPD (n = 120)</th>
<th>Mild-Moderate (n = 65)</th>
<th>Severe (n = 60)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>66.05 ± 11.6</td>
<td>65.75 ± 11.0</td>
<td>67.07 ± 11.8</td>
<td>66.14 ± 13.6</td>
<td>68.32 ± 9.1</td>
<td>0.339</td>
</tr>
<tr>
<td>Male gender</td>
<td>164 (68.0)</td>
<td>117 (71.8)</td>
<td>78 (65.0)</td>
<td>43 (66.2)</td>
<td>39 (65.0)</td>
<td>0.124</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>26.17 ± 5.9</td>
<td>26.37 ± 6.4</td>
<td>25.73 ± 4.8</td>
<td>26.39 ± 4.7</td>
<td>25.15 ± 5.1</td>
<td>0.343</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>74.85 ± 18.4</td>
<td>75.78 ± 19.9</td>
<td>72.92 ± 16.2</td>
<td>74.71 ± 16.1</td>
<td>71.15 ± 17.2</td>
<td>0.199</td>
</tr>
<tr>
<td>Height, cm</td>
<td>168.87 ± 8.2</td>
<td>169.26 ± 8.1</td>
<td>168.02 ± 8.3</td>
<td>167.94 ± 8.2</td>
<td>168.24 ± 8.4</td>
<td>0.210</td>
</tr>
<tr>
<td>White</td>
<td>240 (99.6)</td>
<td>163 (100)</td>
<td>119 (99.2)</td>
<td>64 (98.5)</td>
<td>60 (100)</td>
<td>0.319</td>
</tr>
<tr>
<td>Vitality</td>
<td>47.77 ± 18.8</td>
<td>47.15 ± 18.0</td>
<td>46.78 ± 19.9</td>
<td>48.89 ± 19.5</td>
<td>45.47 ± 19.9</td>
<td>0.874</td>
</tr>
<tr>
<td>FVC, post-brd, % predicted</td>
<td>81.59 ± 19.2</td>
<td>87.57 ± 6.1</td>
<td>86.63 ± 6.2</td>
<td>90.71 ± 5.5</td>
<td>86.46 ± 6.1</td>
<td>0.168</td>
</tr>
<tr>
<td>Lung function parameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVC, post-brd, % predicted</td>
<td>81.59 ± 19.2</td>
<td>87.57 ± 6.1</td>
<td>86.63 ± 6.2</td>
<td>90.71 ± 5.5</td>
<td>86.46 ± 6.1</td>
<td>0.168</td>
</tr>
<tr>
<td>FEV1, post-brd, % predicted</td>
<td>81.59 ± 19.2</td>
<td>87.57 ± 6.1</td>
<td>86.63 ± 6.2</td>
<td>90.71 ± 5.5</td>
<td>86.46 ± 6.1</td>
<td>0.168</td>
</tr>
<tr>
<td>FEV1/FVC, post-brd, %</td>
<td>81.59 ± 19.2</td>
<td>87.57 ± 6.1</td>
<td>86.63 ± 6.2</td>
<td>90.71 ± 5.5</td>
<td>86.46 ± 6.1</td>
<td>0.168</td>
</tr>
</tbody>
</table>

Concomitants

- Arterial hypertension
- Coronary artery disease
- Congestive heart failure
- Diabetes mellitus
- Dementia
- Depression
- Malignancy
- Myocardial infarction
- Pulmonary hypertension
- Renal failure
- Age-adjusted Charlson Comorbidity Index score

St. George's Respiratory Questionnaire

- Symptoms score
- Activity score
- Impact score
- Total score

Short Form 36

- Physical function
- Role physical
- Role emotional
- Social functioning
- Mental health
- Body pain
- Vitality
- General health

COPD assessment

- GOLD grade
- FEV1/FVC post-brd, % predicted

Lung function parameters

- FVC, post-brd, % predicted
- FEV1, post-brd, % predicted

(For footnote see next page.)
rized in figure 1. In total, 241 patients with GOLD grade II–IV were included in the predefined VIP nested cohort. Out of the 241, serum VIP levels were analyzed in 163 patients at stable state and in 120 patients with AE-COPD.

Table 1 depicts the demographic characteristics of stable patients in whom VIP level were assessed at both stable state and at exacerbation. The comparison of stable COPD versus AE-COPD showed similar demographics at baseline.

At baseline, the Borg score was significantly higher in patients developing AE-COPD (p < 0.001). In contrast, the forced vital capacity (FVC post-bronchodilator percentage predicted) was significantly lower in stable COPD versus AE-COPD patients (p = 0.003). Additionally, significant differences were found at baseline between patients who remained stable and those who had exacerbation during follow-up, for the activity score (p = 0.013), the impact score (p = 0.002), the total score (p = 0.003) and physical function (p = 0.005).

Serum VIP Level in Stable and AE-COPD Patients

Serum VIP levels were significantly higher in AE-COPD patients (median 130.25 pg/ml, 95% CI 112.19–151.83) as compared to patients with stable COPD (median 40.07 pg/ml, 95% CI 37.13–43.96, p < 0.001). Importantly, the association of increased serum VIP with AE-COPD remained significant after propensity score matching (p < 0.001). Serum VIP levels were similar in mild to moderate and severe AE-COPD (p = 0.805) (fig. 2). Circulating serum VIP levels did not differ among Anthonisen’s exacerbation types (type 1, n = 55; type 2, n = 25; type 3, n = 35; p = 0.740).

The longitudinal change in circulating VIP levels at stable state and at exacerbation for 30 patients is depicted in figure 3a and indicates a significant increase at exacerbation (p < 0.001). Out of these 30 patients, 6 had very high serum VIP at exacerbation. Upon exclusion of these extreme values, serum VIP level still remained significantly higher at exacerbation than at stable state (p < 0.001) (fig. 3b).

Association of Serum VIP Level and Clinical Characteristics at Stable State

At stable state, there was no significant difference of serum VIP comparing patients with comorbidities to those without history of myocardial infarction (p = 0.936), arterial hypertension (p = 0.731), coronary artery disease (p = 0.831), diabetes mellitus (p = 0.438), malignant solid

(Footnote to table 1.)

Continuous data are shown as mean ± SD or median [interquartile range] and categorical variables as n (%). BODE = Body mass index, airflow obstruction, dyspnea and exercise capacity; bpm = beats/min; brd = bronchodilator; SaO2 = peripheral oxygen saturation. *42 COPD patients were at stable state and had acute exacerbation. **5 patients had both mild to moderate and severe AE-COPD.
tumor (p = 0.899), PAH (p = 0.361) and depression (p = 0.172). Conversely, VIP levels were significantly higher in patients with congestive heart failure (p = 0.035) and renal diseases (p = 0.036) as compared to those without these comorbidities. There was no association between the serum VIP and post-bronchodilator FEV1% predicted (p = 0.250). Serum VIP levels did not correlate with blood oxygen saturation at rest (p = 0.722) or at exercise (p = 0.168).

Association of Serum VIP Level and Clinical Characteristics at Exacerbation
The clinical characteristics of patients at exacerbation are depicted in Table 2. Cultures from sputum yielded pathogenic bacteria in 15 patients (12.5%). *Streptococcus pneumoniae* accounted for 3.3%, *Klebsiella pneumoniae* for 1.7%, *Chlamydia pneumoniae* for 1.6%, *Haemophilus influenzae* for 2.5% and *Staphylococcus aureus* for 1.7%.

Serum VIP did not correlate significantly with oxygen saturation at rest at exacerbation (p = 0.322). Serum VIP levels showed no correlation to C-reactive protein (p = 0.451). At exacerbation, we observed no association of serum VIP with relevant comorbidities (p = not significant for all). However, AE-COPD patients with coronary artery disease had a significant increase in serum VIP (p = 0.020). There was no association between circulating VIP levels and the duration of exacerbation (p = 0.260), dyspnea at exacerbation as assessed by the MMRC scale (p = 0.092) or the presence of fever (n = 20, p = 0.177). We found no significant association of VIP to leukocyte count (p = 0.713) and FEV1% predicted (p = 0.805). VIP was neither associated to PaO2 (p = 0.286) nor PaCO2 (p = 0.596). VIP levels were similar in those treated with and without oral steroids (n = 83, p = 0.530) and antibiotics (n = 74, p = 0.377).
Table 2. Clinical characteristics of 120 patients at AE-COPD

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptoms of exacerbation</td>
<td></td>
</tr>
<tr>
<td>Increased dyspnea</td>
<td>111 (92.5)</td>
</tr>
<tr>
<td>Increased sputum volume</td>
<td>74 (61.6)</td>
</tr>
<tr>
<td>Increased sputum purulence</td>
<td>67 (55.8)</td>
</tr>
<tr>
<td>Sputum volume</td>
<td></td>
</tr>
<tr>
<td>No sputum</td>
<td>21 (17.5)</td>
</tr>
<tr>
<td>Large amount (>1 soup spoon)</td>
<td>14 (11.6)</td>
</tr>
<tr>
<td>Moderate amount (1 soup spoon)</td>
<td>43 (35.8)</td>
</tr>
<tr>
<td>Small amount (1 tea spoon)</td>
<td>41 (34.1)</td>
</tr>
<tr>
<td>Sputum color</td>
<td></td>
</tr>
<tr>
<td>No sputum</td>
<td>25 (21.0)</td>
</tr>
<tr>
<td>Purulent-green</td>
<td>14 (11.7)</td>
</tr>
<tr>
<td>Purulent-yellow</td>
<td>43 (35.8)</td>
</tr>
<tr>
<td>Transparent</td>
<td>7 (5.8)</td>
</tr>
<tr>
<td>White</td>
<td>30 (25.0)</td>
</tr>
<tr>
<td>Duration of symptoms prior to visit</td>
<td>5 [0–30]</td>
</tr>
<tr>
<td>Chest X-ray and/or chest CT scan</td>
<td>86 (71.6)</td>
</tr>
<tr>
<td>Sputum microbiology</td>
<td></td>
</tr>
<tr>
<td>Sputum collected</td>
<td>49 (40.8)</td>
</tr>
<tr>
<td>Good sputum quality</td>
<td>41 (34.1)</td>
</tr>
<tr>
<td>Culture performed</td>
<td>42 (35.0)</td>
</tr>
<tr>
<td>Potentially pathogenic microorganisms</td>
<td>15 (12.5)</td>
</tr>
<tr>
<td>Treatment of exacerbation</td>
<td></td>
</tr>
<tr>
<td>Combination of inhaled beta2-agonists and anticholinergics</td>
<td>40 (33.3)</td>
</tr>
<tr>
<td>Inhaled steroids</td>
<td>30 (25.0)</td>
</tr>
<tr>
<td>Oral, intramuscular or intravenous glucocorticosteroids</td>
<td>82 (68.3)</td>
</tr>
<tr>
<td>Oral or intravenous antibiotics</td>
<td>73 (60.8)</td>
</tr>
<tr>
<td>Oral or intravenous methylxanthines</td>
<td>12 (10.0)</td>
</tr>
<tr>
<td>Oxygen</td>
<td>39 (32.5)</td>
</tr>
<tr>
<td>New prescription or increased dosage of diuretic therapy</td>
<td>6 (5.0)</td>
</tr>
<tr>
<td>Severity of exacerbation</td>
<td></td>
</tr>
<tr>
<td>Patients requiring hospitalization</td>
<td>15 (12.5)</td>
</tr>
<tr>
<td>Length of hospital stay, days</td>
<td>10 [1–28]</td>
</tr>
<tr>
<td>Noninvasive mechanical ventilation</td>
<td>3 (2.5)</td>
</tr>
<tr>
<td>Invasive mechanical ventilation</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Indications for hospital admission for COPD exacerbation</td>
<td></td>
</tr>
<tr>
<td>Marked increase in intensity of symptoms, such as sudden development of resting dyspnea</td>
<td>34 (28.3)</td>
</tr>
<tr>
<td>Severe underlying COPD</td>
<td>37 (30.8)</td>
</tr>
<tr>
<td>Onset of new physical signs (e.g. cyanosis, peripheral edema)</td>
<td>9 (7.5)</td>
</tr>
<tr>
<td>Failure of exacerbation to respond to initial medical management</td>
<td>16 (13.3)</td>
</tr>
<tr>
<td>Significant comorbidities</td>
<td>20 (16.6)</td>
</tr>
<tr>
<td>Frequent exacerbations</td>
<td>20 (16.6)</td>
</tr>
<tr>
<td>Newly occurring arrhythmias</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Diagnostic uncertainty</td>
<td>3 (2.5)</td>
</tr>
<tr>
<td>Older age</td>
<td>21 (17.5)</td>
</tr>
<tr>
<td>Insufficient home support</td>
<td>10 (8.3)</td>
</tr>
<tr>
<td>Indication for potential ICU admission of patients hospitalized with exacerbation of COPD</td>
<td>2 (1.6)</td>
</tr>
<tr>
<td>Severe dyspnea responding inadequately to initial emergency therapy</td>
<td>3 (2.5)</td>
</tr>
<tr>
<td>Changes in mental status (confusion, lethargy, coma)</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>Persistent or worsening hypoxemia (PaO2 8.0 kPa, 60 mm Hg), and/or severe/worsening respiratory acidosis (pH <7.25) despite supplemental oxygen and noninvasive ventilation</td>
<td>2 (1.6)</td>
</tr>
<tr>
<td>Hemodynamic instability – need for vasopressors</td>
<td>1 (0.8)</td>
</tr>
</tbody>
</table>

Continuous data are shown as median [interquartile range] and categorical variables as n (%).
Effect of Serum Processing on VIP Level

Comparing serum VIP levels in fast-frozen serum samples directly and after repeated thawing from identical stable state COPD patients (n = 20), we observed that only fast-frozen serum contained measurable amounts of VIP, while repeated thawing (1×) degraded VIP to undetectable levels (fig. 4).

Diagnostic Performance of Serum VIP

Using the AUC and 95% CI of ROC analysis, increased serum VIP levels in AE-COPD proved to have a robust performance (AUC 0.849, 95% CI 0.779–0.899) to diagnose exacerbation (fig. 5a). According to the Youden index, the optimal cutoff value for serum VIP in AE-COPD was 56.6 pg/ml. The probability of exacerbation was very low when serum VIP was ≤35 pg/ml (sensitivity >90%) and very high when serum VIP was ≥88 pg/ml (specificity >90%). We did not find a difference in the diagnostic performance in Anthonisen type 1, type 2 and type 3 patients.

Diagnostic performance of serum VIP improved (AUC 0.908, 95% CI 0.838–0.978; AUC 0.910, 95% CI 0.830–0.989) in patients having paired stable and exacerbation VIP levels (n = 30) (fig. 5b) and also when extreme VIP values were excluded (n = 24) (fig. 5c).

Upon dichotomizing by lung function, the performance of serum VIP tended to be better in GOLD grade II (sensitivity = 84.6%, specificity = 76.0%, negative likelihood ratio = 0.2, positive likelihood ratio = 3.53) than in GOLD grade III and IV (sensitivity = 76.1%, specificity = 75.8%, negative likelihood ratio = 0.26, positive likelihood ratio = 3.15).

Discussion

We report that serum VIP is significantly higher at exacerbation as compared to stable state COPD, suggesting its diagnostic potential to identify COPD patients at exacerbation.

AE-COPD is a serious cause of increased morbidity, mortality and disease-related expenditures [34]. A biomarker with the potential to diagnose AE-COPD would therefore be beneficial for COPD management. Several serum markers have been reported to be upregulated at AE-COPD, such as C-reactive protein [4], copeptin and procalcitonin [35], tumor necrosis factor-α and leptin [36], endothelin-1 [37], fibrinogen [38, 39], IL-6 [40], IL-8 [41], eosinophil cationic protein, myeloperoxidase [42] and soluble urokinase-type plasminogen activator receptor [43]. However, there has been no report on the relationship of serum VIP and AE-COPD. Therefore, to our knowledge, this is the first study analyzing the serum VIP levels in COPD patients at stable disease and acute exacerbation.

Experimental studies showed that VIP relaxes vascular and non-vascular smooth muscles through the activation of adenylate cyclase and cyclic adenosine-3′,5′-monophosphate (cAMP) production [44], and due to this function as a vasodilator and bronchodilator, VIP was suggested as a therapeutic target as well as a biomarker for COPD, asthma and PAH [27]. In this study we did not observe increased VIP serum levels in COPD patients with PAH and did not find a correlation of VIP serum levels with low oxygen saturation as suggested by animal studies and in vitro models [45–47]. It is difficult to explain this discrepancy between studies in animal and human beings, as it may not necessarily be reproducible in COPD patients. In murine models, lung remodeling and airway hyperreactivity increased when VIP levels were low, suggesting a therapeutic effect of exogenous VIP [26, 48]. In human epithelial cell lines VIP protected against hypoxia-induced tissue damage and increased experimental wound repair through cAMP-dependent regulatory signaling [24, 25]. Regarding exacerbation caused by viral infection, VIP was protective in mice against cytomegalovirus-induced lung damage [19]. In contrast to these animal models, data obtained from human samples...
indicated that serum VIP increases under similar pathologic conditions, suggesting that VIP is distinctly regulated and has different functions in humans. Therefore the translation of animal studies to human diseases might not be straightforward.

In this study, we observed a strong correlation of increased serum VIP with AE-COPD and therefore suggest serum VIP as a potential biomarker to diagnose exacerbation of COPD. This finding was supported by the longitudinal observation that serum VIP was increased at AE-COPD compared to stable state.

Relating increased serum VIP in acute exacerbation to the protein’s known biological functions, it remains unclear whether this is the cause or the result of exacerbation. VIP mediates its functions through two G protein-coupled receptors, the VIP-pituitary adenylate cyclase ac-
tivating peptide receptors, VPAC1 and VPAC2 [49]. In humans and murine models the increased expression of VPAC1 in the airways of chronic bronchitis smokers, in the alveolar macrophages of COPD patients and in allergic asthma was reported [50–52]. This increased expression of VIP receptors may indicate that the ligand is missing, that the ligand is not active or that the signaling of the receptors is not correctly mediated. Unfortunately, up to now none of the previous studies has determined circulating VIP levels in these patients and examined their association to clinical characteristics, thus the role of VIP in COPD remains unclear.

Furthermore, our results confirm the short half-life of VIP [53, 54], as only the fast-frozen serum samples contained measurable amounts of VIP, while all other serum samples (repeatedly thawed, 1×) had non-detectable or very low amounts of VIP, thus only fast-processed or freshly drawn blood samples can be used if VIP is considered as an indicator of COPD patients at exacerbation [27, 53–55].

Our study has few limitations. It was performed in a single center in Switzerland and included a relatively small number of patients with paired samples at exacerbation and at stable state. However, the diagnostic performance of VIP in the whole study population was robust and improved considerably when the analysis was restricted to the cohort with paired samples. A further limitation is the fact that, currently, there is no gold standard to diagnose exacerbation of COPD. Accordingly, the diagnostic performance of VIP was compared to the widely accepted clinical definition of exacerbation. It is unclear whether the diagnostic performance of VIP would be maintained in a population presenting with clinical symptoms caused by other entities, such as congestive heart failure, pulmonary embolism or pneumonia. Thus, further studies including patients with conditions mimicking AE-COPD and a cost-effectiveness study comparing VIP (EUR 25) to other costly examinations potentially required to exclude AE-COPD (for instance, D-dimer EUR 32, brain natriuretic peptide EUR 70, chest X-ray EUR 120, chest CT EUR 250 and echocardiography EUR 350) would be of interest. Study strengths include the complete characterization of patients and disease characteristics at stable state and exacerbation and the dedicated sample handling for this particular biomarker determination. The study also benefits from the distinct diagnostic performance of the biomarker and the clinical potential associated with the presented findings.

Conclusions

We present data strongly suggesting that increased serum VIP in COPD patients indicates acute exacerbation. Therefore we suggest that serum VIP levels ≥288 pg/ml be used as an indicator of exacerbation in COPD patients.

Acknowledgement

The authors thank Anja Meyer, RN (Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital Basel, Basel, Switzerland), for help in data collection, and Mr. Andy Schötzau, Dipl Math (www.eudox.ch), for statistical advice.

Financial Disclosure and Conflicts of Interest

Prof. Daiana Stolz was supported by the Swiss National Foundation (PP00-P3_128412/1). All authors report that no potential conflicts of interest exist with any companies/organizations whose products or services may be discussed in this article. The sponsors of this investigator-initiated project had no role in the design of the study, the collection and analysis of the data or the preparation of the manuscript.

References

VIP for Diagnosing Exacerbation in COPD

Respiration 2015;90:357–368
DOI: 10.1159/000439228

