Vaginal Pessary for Uterine Repositioning during High-Intensity Focused Ultrasound Ablation of Uterine Leiomyommas

Tajana Klepac Pulanica Aradhana M. Venkatesanb James Segarsa
Sham Sokkac, d Bradford J. Woodb Pamela Strattona

aProgram in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, bRadiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md., and cPhilips Healthcare, Cleveland, Ohio, USA; dPhilips Healthcare, Helsinki, Finland

Established Facts

- Magnetic resonance-guided, high-intensity focused, ultrasound ablation of uterine leiomyommas is a successful non-surgical approach to treating symptomatic leiomyommas that preserves the uterus.
- Magnetic resonance-guided, high-intensity focused, ultrasound ablation of uterine leiomyommas is possible only if the path of the ultrasound beam to the uterus is free of intervening scar and the bowel.

Novel Insights

- A vaginal pessary may aid in repositioning an axial or retroverted uterus for safe ablation of uterine leiomyommas, thereby avoiding intestinal injury.

Key Words

Vaginal pessary · Focused ultrasound · Magnetic resonance imaging · Leiomyoma

Abstract

In order to ensure safe magnetic resonance-guided, high-intensity focused, ultrasound ablation of uterine leiomyommas, the ultrasound beam path should be free of intervening scar and bowel. Pre-treatment MRI of a 9-cm long and 7.7-cm wide leiomyomatous uterus in a 39-year-old woman with menorrhagia and abdominopelvic pain initially demonstrated a focused ultrasound treatment path without a bowel between the uterus and the abdominal wall. On the day of ablation, however, multiple loops of bowel were observed in the ultrasound beam path by MRI. Uterine repositioning was

accomplished with a 76-mm donut vaginal pessary, which antverted the fundus and successfully displaced the bowel. A vaginal pessary may aid in repositioning an axial or retroverted uterus to enable ablation of uterine leiomyomas.

Introduction

Uterine leiomyomas are a common gynecologic problem associated with menorrhagia and pelvic pain. Leiomyomas are present in 30–80% of women who are in their reproductive age [1]. Treatment options for symptomatic leiomyomas include pharmacologic, surgical and interventional radiology therapies. Pharmacologic treatment, such as combined oral contraceptives, does not remove the leiomyomas, and symptoms may return when treatment is stopped [2]. Although hysterectomy is the standard treatment for symptomatic leiomyomas, less invasive alternatives have become available. In the 1980s, operative endoscopy and improved morcellation techniques enabled laparoscopic and hysteroscopic myomectomies, allowing patients to benefit by minimizing recovery time and health care costs [3]. However, only one third of female patients deliver vaginally after myomectomy [4].

Uterine fibroid embolization (UFE), while eliminating the need for general anesthesia can nonselectively minimize the blood supply to the uterus, may not be suitable for women who are seeking pregnancy [5]. In 2004, the US Food and Drug Administration approved the first device, which combined MRI and ultrasonography as a noninvasive therapy for uterine leiomyomas [6]. This technique is called magnetic resonance-guided, high-intensity focused, ultrasound (MR-HIFU) because MRI is used to monitor the path and location of a tightly focused, high-intensity ultrasound beam during treatment of leiomyomas, resulting in coagulative necrosis and subsequent leiomyoma involution [7]. Although a recent study reported that UFE has a significantly lower rate of re-intervention than MR-HIFU [8], MR-HIFU has many advantages such as avoidance of ionizing radiation, faster recovery time, minimal reported adverse effects, improvement in quality of life and conversion of inpatient hospital admissions to outpatient procedure, which is a very attractive option economically [9]. Additionally, similar to UFE, MR-HIFU is potentially favorable for patients planning pregnancy [10].

In order to perform high-intensity focused ultrasound ablation of uterine leiomyomas, the path of the ultrasound beam must be free of intervening significant scar and any bowel. Women with symptomatic leiomyomas with an axial or retroverted 8 to 12-week sized uterus may not be able to undergo this treatment if the bowel is located anterior to the uterus. The use of a vaginal pessary is described to reposition the uterus, displace bowel loops anterior to uterus and facilitate a safe pathway for MR-HIFU ablation of uterine leiomyomas.

Case Report

Women aged between 18 and 50 were recruited at the Clinical Center, National Institutes of Health, for a prospective study approved by the NICHD IRB (NCT00837161). A 39-year-old woman had regular, but heavy menses, uterine leiomyomas, and worsening abdominopelvic pain. On bimanual examination, she had an irregularly shaped 10-week sized axial uterus and experienced mild tenderness to palpation of the uterine fundus. Transvaginal ultrasonography confirmed an enlarged axial uterus measuring 6.5 cm in the anterioposterior fundus, 9 cm in the craniocaudal dimension and 7.7 cm in transverse uterine width with a hypoechoic fundal leiomyoma measuring 2.8 × 3.4 × 2.6 cm. Pre-treatment MRI initially demonstrated an accessible treatment path with no bowel between the uterus and abdominal wall. On the day of MR-HIFU treatment as part of a clinical trial to undergo leiomyoma ablation followed by hysterectomy (ClinicalTrials.gov identifier: NCT00837161), multiple loops of small bowel were observed between the abdominal wall and uterus on MRI, in the ultrasound beam path (fig. 1). The position of the in-
tervening bowel was determined to be unsafe for focused ultrasoundography. Several maneuvers failed to reposition the uterus or the bowel: patient ambulation, abdominal massage in the supine position, and sterile saline instilled into the bladder via a Foley catheter left in situ. Uterine repositioning was eventually accomplished with a 76-mm donut rubber vaginal pessary (fig. 2), which anteverted the fundus and successfully displaced the bowel. No adverse events were observed during MR-HIFU treatment (fig. 3).

Discussion

MR-HIFU is a promising, noninvasive modality that might decrease the need for invasive procedures in the treatment of uterine leiomyomas. It effectively limits leiomyoma growth by targeting only the leiomyoma and not affecting the major blood supply of the uterus. Although still under investigation, this strategy has the potential to preserve fertility and uterine function in women of childbearing age [10]. According to the Office for National Statistics, there is a delay in childbearing age and this can be due to the postponement of marriage and partnership formation to later years [11], underscoring the importance of fertility-sparing interventions for treatment of uterine leiomyomas. Recent studies showed that women undergoing MR-HIFU have a significant reduction in leiomyoma size with rapid clinical improvement, minimal complications, and fewer side effects compared with hysterectomy [12]. Study of long-term outcomes after MR-HIFU showed significant decrease in treated leiomyoma volume, with the mean volume decreasing by 32% after 3 years, also decreasing with time [13]. Our patient did not experience any adverse effects during the high-intensity focused ultrasound treatment.

Limitations in the use of high-intensity focused ultrasound include large submucosal leiomyomas and inaccessible leiomyoma location because of significant abdominal scarring, intervening bowel, or close proximity to the spine. Zhang et al. [14] described successful high-intensity focused ultrasound treatment for ablating uterine leiomyomas without bowel injury in 21 patients with bowel initially placed anterior to the uterus. They used a degassed water balloon to compress and displace bowel, or moved the bowel out of pelvis by filling the bladder with saline.

Vaginal pessaries are used to support and reposition a prolapsed or malpositioned uterus [15, 16], especially a retroverted uterus. Another option might have been to place a manipulator within the uterine cavity to reposition the uterus, a technique used during laparoscopic surgery [17]. However, uterine manipulator placement and manipulation during MR-HIFU is difficult. Its placement requires a speculum and visualization of the cervix; and manipulation would be challenging when the patient is lying prone on the treatment table. Additionally, because

Fig. 2. Sagittal T2 weighted images following vaginal pessary placement (white arrow). Pessary anteverts uterus (black arrow), displaces anterior bowel loops and facilitates safe HIFU.

Fig. 3. Sagittal T1 weighted image post contrast shows area of necrosis (black arrow) achieved (immediately post HIFU) with pessary in place (white arrow).
heat is generated during high-intensity focused ultrasound, a uterine manipulator within the endometrial cavity may absorb and conduct heat to adjacent areas, potentially resulting in thermal damage to the endometrium or subjacent myometrium. Moreover, the components of certain types of uterine manipulators may be metallic and/or ferromagnetic, prohibiting the use in the MR environment entirely.

In our case, we successfully anteverted an axial uterus and moved bowel loops away from the ultrasound beam path with the use of a vaginal pessary, maintaining the uterus in a safe position for MR-HIFU. At study hysterectomy within 30 days of treatment, the area of necrosis corresponded to that seen on imaging [18]. Without that maneuver, MR-HIFU potentially could not be performed due to lack of a safe path to the targeted leiomyoma. Vaginal pessary placement may help in repositioning an axial or retroverted uterus to enable safe ablation of uterine leiomyomas and avoid bowel damage.

Grant Support

Supported in part by the National Institutes of Health (NIH) Center for Interventional Oncology, the NIH Intramural Research Training Program, the Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NICHD protocol 13-CH-N054, the NIH Clinical Center, by a Collaborative Research and Development Agreement (CRADA) between NIH and Philips Healthcare, and by the National Cancer Institute under Contract No. HHSN261200800001E. The content of this publication neither necessarily reflects the views or policies of the Department of Health and Human Services, nor does it mention trade names, names of commercial products, or organization as imply endorsement by the US Government. ClinicalTrials.gov identifier: NCT00837161.

Disclosure Statement

Dr. S. Sokka is an employee of Philips Healthcare. The other authors did not report any potential conflicts of interest.

References

16 Thys SD, Roovers JP, Geomini PM, Bongers MY: Do patients prefer a pessary or surgery as primary treatment for pelvic organ prolapses. Gynecol Obstet Invest 2012;74:6–12.