Weight Management in Phenylketonuria: What Should Be Monitored?

Julio César Rocha a–c Margreet van Rijn d Esther van Dam d Kirsten Ahring e
Amaya Bélanger-Quintana f Katharina Dokoupil g Hulya Gokmen Ozel h
Anna Maria Lammardo i Martine Robert j Carina Heidenborg k
Anita MacDonald l

a Centro de Genética Médica Doutor Jacinto de Magalhães, CHP EPE, b Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, and c Center for Health Technology and Services Research (CINTESIS), Porto, Portugal; d University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Groningen, The Netherlands; e Department of PKU, Kennedy Centre, Copenhagen University Hospital, Glostrup, Denmark; f Unidad de Enfermedades Metabólicas Servicio de Pediatría, Hospital Ramon y Cajal, Madrid, Spain; g Department of Metabolism and Nutrition, Dr. von Hauener Children’s Hospital, University of Munich, Munich, Germany; h Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey; i Department of Pediatrics, San Paolo Hospital University of Milan, Milan, Italy; j Nutrition and Metabolism Unit, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium; k Department of Clinical Nutrition and Dietetics, Karolinska University Hospital, Stockholm, Sweden; l The Children’s Hospital, Birmingham, UK

Key Words
Overweight · Obesity · Body composition · Comorbidities · Phenylketonuria · Diet

Abstract
Background: Severe intellectual disability and growth impairment have been overcome by the success of early and continuous treatment of patients with phenylketonuria (PKU). However, there are some reports of obesity, particularly in women, suggesting that this may be an important comorbidity in PKU. It is becoming evident that in addition to acceptable blood phenylalanine control, metabolic dieticians should regard weight management as part of routine clinical practice. Summary: It is important for practitioners to differentiate the 3 levels for overweight interpretation: anthropometry, body composition and frequency and severity of associated metabolic comorbidities. The main objectives of this review are to suggest proposals for the minimal standard and gold standard for the assessment of weight management in PKU. While the former aims to underline the importance of nutritional status evaluation in every specialized clinic, the second objective is important in establishing an understanding of the breadth of overweight and obesity in PKU in Europe. Key Messages: In PKU, the importance of adopting a European nutritional management strategy on weight management is highlighted in order to optimize long-term health outcomes in patients with PKU.

Introduction

Historically, the main objective of phenylketonuria (PKU) management was to prevent profound and irreversible intellectual disability together with the avoidance of nutritional deficiencies resulting in growth impairment [1]. Traditional low phenylalanine dietary manage-
ment, and more recently with pharmacological treatment, has been very successful in achieving these goals. However, there is concern that obesity may be a common comorbidity. Although in PKU there is still limited evidence, some studies highlight an increased obesity risk particularly in females [2–4]. It is therefore essential that PKU health professionals are able to conduct lifestyle ‘risk assessments’ to identify potential obesogenic factors, consider trends in nutritional status by systematically monitoring key clinical and biochemical measures, and provide effective nutritional and lifestyle advice in order to avoid obesity. Also, it is important to standardize procedures for data collection in order to monitor trends between centres and countries. This will help clarify if overweight is related to the disorder, the treatment or to a disrupted energy balance.

Therefore, this paper has 3 objectives: (1) to clarify definition and interpretation of measurements for overweight and obesity; (2) to define minimal standards for monitoring overweight and obesity in the PKU clinic; and (3) to propose a ‘gold standard’ for data collection for assessment of overweight, obesity and lifestyle in PKU.

Defining and Assessing Overweight and Obesity

Adequate assessment depends on age and gender, and careful interpretation is needed particularly in childhood and adolescence, where the correct diagnosis of overweight and obesity is more challenging than in adulthood. Several methods exist for assessing overweight and obesity, all with their pros and cons.

Body Mass Index

Body mass index (BMI) has been used in paediatrics since the 1980s [5] and defines the widely used criteria for overweight and obesity in adults (BMI ≥ 25 kg/m2 corresponds to overweight and BMI ≥ 30 kg/m2 corresponds to obesity) [6]. The preference for its use is from the association with body composition and disease risk factors, as well as being calculated by weight and height measurements only [7]. In paediatrics, comparison with a reference population is required. Several countries have their own nationally representative reference population growth charts [7]. However, the World Health Organization (WHO) growth charts (0–5 years of age) represent a standard of physiological growth, since breast-fed children from controlled pregnancies were included [8] and they have also proposed references for children aged 5–19 years [9]. Other international criteria for diagnosing overweight and obesity in paediatrics are available from the International Obesity Task Force (IOTF). Although this can be used for international descriptive and comparative studies, it is not designed for clinical use and so should not replace the national reference data [10]. Nevertheless, IOTF cut-offs expressed as centiles permit comparisons with other international criteria like WHO [11]. Table 1 summarizes internationally available criteria.

Caution is needed when interpreting results from studies using different criteria to classify overweight and obese individuals, for example, IOTF, WHO or other national data, like Centers for Disease Control and Prevention (CDC) [12], since variable results are expected [13]. In addition, more research is needed to better identify universal BMI cut-offs and its association with health outcomes later in life [14].

Body Composition

Although BMI is the most commonly used marker for diagnosing overweight and obesity, it should be highlighted that overweight definition is based on the proportion of body fat to the body weight, which results from increased energy intake, reduced energy expendi-

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Age group</th>
<th>Risk of overweight</th>
<th>Overweight</th>
<th>Obesity</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO growth charts [8]</td>
<td><5 years</td>
<td>1 SD</td>
<td>2 SD</td>
<td>3 SD</td>
</tr>
<tr>
<td>WHO growth charts [9]</td>
<td>5–19 years</td>
<td>–</td>
<td>1 SD</td>
<td>2 SD</td>
</tr>
<tr>
<td>CDC growth charts [12]</td>
<td>2–20 years</td>
<td>–</td>
<td>1 SD</td>
<td>2 SD</td>
</tr>
<tr>
<td>IOTF [11]</td>
<td>2–18 years</td>
<td>–</td>
<td>Cut-off corresponding to a BMI of 25 kg/m2 at 18 years</td>
<td>Cut-off corresponding to a BMI of 30 kg/m2 at 18 years</td>
</tr>
<tr>
<td>WHO adults [6]</td>
<td>Adults</td>
<td>–</td>
<td>25 ≤ BMI < 30 kg/m2</td>
<td>BMI ≥ 30 kg/m2</td>
</tr>
</tbody>
</table>
ture or both [15]. According to WHO, the ‘real or clinic’ overweight is perceived when the adiposity level is sufficiently high to increase morbidity and mortality [15]. Although considered a good screening tool, BMI may not always identify the overfat individuals (increased fat mass percentage), since a stunted linear growth may be responsible for the increased BMI [16]. Even in adults, a rigorous assessment and careful interpretation between BMI and health outcome are needed, since these relationships are not always clear [17]. Considering the wide range of methods available for measuring body composition, it is important to refer that these start with the predictive techniques (skinfold thicknesses and bioelectrical impedance analysis), then reference methods like dual energy X-ray absorptiometry, isotope dilution and air displacement plethysmography, finalizing with the gold standard methods (4-component model for quantifying fat, water, mineral and protein and magnetic resonance imaging for quantifying fat distribution) [18].

Metabolic Comorbidities

The relationship between BMI and disease is mediated by a metabolically abnormal phenotype mainly characterized by dyslipidemia, hypertension, insulin resistance and inflammation, all coexisting with increased abdominal obesity [19, 20]. So, in addition to ‘overweight’, it is increasingly important to define overfat individuals and particularly those at increased risk of metabolic disturbances. Further, considering that visceral adipose tissue assumes great relevance in terms of the inflammatory impact of the adipose tissue between metabolic syndrome and allied comorbidities [21, 22], understanding the main location of body fat deserves clinical attention. Further study is particularly required to investigate if overweight in PKU is associated with the same abnormal metabolic patterns usually seen in the general population [23].

Assessment of Overweight, Obesity and Lifestyle in Patients with PKU

Published results on overweight and obesity in PKU patients are contradictory; most of them are only representative of single PKU centres and they mainly include children and adolescents [23]. Not all studies demonstrate overweight in patients with PKU [2, 4, 24–27], but a developing trend suggests that overweight in PKU is following the general population [2, 4, 26, 27]. However, this outcome should not be commended, as PKU health care professionals should also focus on general health and prevention of overweight is essential.

Minimal Standards for Monitoring Overweight and Obesity in the PKU Clinic

Minimal standards for monitoring overweight and obesity are proposed in PKU (table 2).

<table>
<thead>
<tr>
<th>Measure</th>
<th>Justification</th>
<th>Practicalities/check-points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary intake and lifestyle</td>
<td>Diet</td>
<td>Total protein, amino acid and natural protein intakes, Total energy intakes, BH4-treated patients analysed separately, Diet practices</td>
</tr>
<tr>
<td>Social and lifestyle</td>
<td>Life-style</td>
<td>Daily main occupation: student, employed or no occupation, Practice of structured exercise: yes or no</td>
</tr>
<tr>
<td>Anthropometry</td>
<td>BMI</td>
<td>Weight and height should be measured with the same equipment and at the same moment of the day (morning or afternoon)</td>
</tr>
<tr>
<td>Clinical biochemistry</td>
<td>Glucose and lipid metabolism</td>
<td>Fasting blood glucose and blood lipids: total cholesterol, HDL, LDL, triglycerides</td>
</tr>
</tbody>
</table>

Table 2. Minimal standards for monitoring overweight and obesity in the PKU clinic
should guide health care professionals into caring for all aspects of health and not solely focused on phenylalanine levels.

Proposed 'Gold Standard' Assessment for Data Collection in PKU

In PKU, in order to understand the European prevalence of overweight and obesity, it is important to assess and collect data in a standardized manner. Table 3 describes a proposed 'gold standard assessment' tool. From the beginning, it is important to differentiate between cross-sectional and longitudinal data. Cross-sectional data will give an indication of the population under immediate follow-up; longitudinal data will demonstrate the evolution of overweight and obesity and a careful interpretation of data will allow the identification of critical periods, helping to clarify if specific PKU treatment strategies have an obesogenic effect. Some studies have already identified adolescence, especially in females [2, 4, 28], and early infancy [29], as critical periods, thereby requiring particular attention. Preventing an early BMI rebound [29] and an understanding of

<table>
<thead>
<tr>
<th>Measure</th>
<th>Justification</th>
<th>Practicalities/check-points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietary intake and life-style</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diet</td>
<td>Diet will modulate the risk of developing overweight and obesity</td>
<td>Total protein, amino acid and natural protein intakes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total energy intakes and % of calories from fat and carbohydrate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carbohydrate intakes, mainly amounts of mono and disaccharide ingestion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BH4-treated patients analysed separately</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BH4-treated patients diet patterns detailed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low protein food intake: types, categories and % of the total daily energy intake</td>
</tr>
<tr>
<td>Social and life-style</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life-style</td>
<td>Life-style will modulate the risk of developing overweight and obesity</td>
<td>Daily main occupation: student, employed or no occupation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency, duration and intensity of physical activity and exercise activities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eating patterns behaviour; frequency of snacks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Patient/caregiver knowledge about healthy foods in PKU</td>
</tr>
<tr>
<td>Anthropometry and body composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI</td>
<td>Good epidemiological marker</td>
<td>Need to use standard methods and calibrated equipment’s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weight and height should be measured with the same equipment and at the same moment of the day (morning or afternoon)</td>
</tr>
<tr>
<td>Waist circumference</td>
<td>Good association with abdominal adiposity</td>
<td>Need to use standard technique</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Need to have trained health care professionals</td>
</tr>
<tr>
<td>Body composition</td>
<td>To differentiate overweight from overfat and to help nutritional status interpretation</td>
<td>To select an available method in each clinic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>To follow standardized procedure in every measurements in order to obtain at least body fat %</td>
</tr>
<tr>
<td>Clinical biochemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose metabolism</td>
<td>Insulin resistance is on the basis of metabolic syndrome</td>
<td>To measure fasting blood glucose</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Add A1C haemoglobin and insulin, especially when insulin resistance is suspected to occur (presence of visceral obesity)</td>
</tr>
<tr>
<td>Lipid metabolism</td>
<td>Dyslipidemia is an important feature of metabolic syndrome being linked with insulin resistance</td>
<td>To measure blood total cholesterol, HDL, LDL, triglycerides</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Need to control the fasting time period in order to have reliable markers</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Inflammatory markers are associated with abdominal obesity</td>
<td>To measure c-reactive protein, especially high-sensitivity c-reactive protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>When possible, cytokines could be monitored, especially in the presence of visceral obesity</td>
</tr>
<tr>
<td>Other clinical data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood pressure</td>
<td>It is a metabolic syndrome component well associated with the global cardiovascular risk</td>
<td>Use standard techniques and procedures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The presence of the 'white coat effect' should be recognized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Careful interpretation is needed in paediatrics</td>
</tr>
</tbody>
</table>
feeding and lifestyle behaviour during adolescence should be beneficial [30] (see table 4 for patient and family data collection).

Importance of Data Collection in Clinical Setting

Adopting standard procedures to monitor dietary intake, weight gain, body composition and clinical biochemistry within the clinical setting not only enables systematic monitoring of nutritional status. It will also enable the application of early preventative action to avoid the development of overweight and obesity. This should help in the provision of appropriate dietary counselling on the use of special low-protein foods; type of phenylalanine-free L-amino acid supplement; choice of natural protein sources particularly in sapropterin responsive patients who may have a higher natural protein tolerance; and also any requirement for additional exercise programmes.

Conclusion

In PKU, nutritional status, particularly being overweight, deserves our attention as it influences long-term health status. Until now, the limited evidence within the field of overweight in PKU does not clarify if this is a serious issue in this special group of individuals. There is an urgent need to have a systematic and standardized overweight-related data collection in European representative cohorts of PKU patients, so that different treatment interventions and approaches can be compared.

Disclosure Statement

C.H. was a member of the European Nutrition Expert Panel, which is supported by Merck Serono.

A.M. has received research funding and honoraria from Nutricia, Vitaflor International and Merck Serono, Member of European Nutrition Expert Panel (Merck Serono international), Member of Sapropterin Advisory Board (Merck Serono international), Member of the Advisory Board Element (Danone-Nutricia) and Arla Advisory Board.

M.R. is a Danone Research and Development consultant, Member of the Advisory Board Element (Danone-Nutricia), received financial research support of Nutricia Netherlands and received honoraria for lecturing and guideline development (Nutricia, SSIF-Excemed).

A.B.-Q. is a member of the European Nutrition Expert Panel (Merck Serono) and member of Sapropterin Advisory Board (Merck Serono).

Sources of Funding

No specific funding for each author or for the manuscript preparation was needed.
Physical status: the use and interpretation of
13 Shields M, Tremblay MS: Canadian child-
14 Rolland-Cachera MF: Towards a simplified
16 Wells JC, Frewtrell MS: Measuring body com-
17 Flegal KM, Kit BK, Orpana H, Graubard BI: Association of all-cause mortality
with overweight and obesity using standard body mass index categories: a systematic re-
18 Wells JC: Body composition in infants: evi-
dence for developmental programming and
techniques for measurement. Rev Endocr
19 Oliveros E, Somers VK, Sochor O, Goel K, Lopez-Fimenez F: The concept of normal
weight obesity. Prog Cardiovasc Dis 2014;56:
426–433.
20 Despres JP, Lemieux I: Abdominal obesity
and metabolic syndrome. Nature 2006;444:
881–887.
21 Despres JP: Abdominal obesity and cardio-
vascular disease: is inflammation the missing
22 Uchi N, Parker JL, Lugus JJ, Walsh K: Adi-
pokines in inflammation and metabolic dis-
23 Rocha JC, MacDonald A, Trefz F: Is over-
weight an issue in phenylketonuria? Mol
24 Dobbelrae D, Michaud L, Debrabander A,
Vanderbecken S, Gottrand F, Turck D, Far-
riaux JP: Evaluation of nutritional status and
pathophysiology of growth retardation in pa-
patients with phenylketonuria. J Inherit Metab
Dis 2003;26:1–11.
25 Huemer M, Huemer C, Moslinger D, Huter D, Stockler-Ispiroglu S: Growth and body
composition in children with classical phenyl-
eketonuria: results in 34 patients and review
of the literature. J Inherit Metab Dis 2007;30:
694–699.
26 Rocha JC, van Spronsen FJ, Almeida MF,
Soares G, Quehlas D, Ramos E, Guimaraes JT,
Borges N: Dietary treatment in phenylketon-
uria does not lead to increased risk of obesity
27 Robertson LV, McStravick N, Ripley S,
Weetch E, Donald S, Adam S, Mccicche A,
Boock S, Macdonald A: Body mass index
in adult patients with diet-treated phenylke-
28 Albersen M, Bonthuis M, de Roos NM, van
den Hurk DA, Carbausius Weber E, Hendriks
MM, de Sain-van der Velden MG, de Koning
TJ, Visser G: Whole body composition analy-
sis by the BodPod air-displacement plethys-
mography method in children with phenylke-
tonuria shows a higher body fat percentage.
29 Scaglioni S, Verducci E, Fiori L, Lammardo
AM, Rossi S, Radaelli G, Riva E, Giovannini
M: Body mass index rebound and overweight
at 8 years of age in hyperphenylalaninaemic
30 Alberga AS, Sigal RJ, Goldfield G, Prud’homme D, Kenny GP: Overweight and obe-
se teenagers: why is adolescence a critical
31 Camp KM, Parisi MA, Acosta PB, Berry GT,
Bilder DA, Blau N, Bodamer OA, Broscio JP,
Brown CS, Burlina AB, Burton BK, Chang CS,
Coates PM, Cunningham AC, Dobrowski
SF, Ferguson JH, Franklin TD, Frazier DM,
Grange DK, Greene CL, Groft SC, Harding
CO, Howell RR, Huntington KL, Hyatt-Knorr HD, Jevaji IP, Levy HL, Lichter-Ko-
necki U, Lindegren ML, Lloyd-Puryear MA,
Matalon K, MacDonald A, McPheeters ML,
Mitchell JJ, Mofidi S, Moseley KD, Mueller
CM, Mullberg SE, Neriak FS, Ogata BN, Pariser AR, Prasad S, Pridjian G, Rasmussen
SA, Reddy UM, Rohr F, Singh RH, Sirrs SM,
Stremer SE, Tagle DA, Thompson SM, Utz
TK, Utz JR, van Spronsen F, Vockley J, Wais-
ieren SE, Weglicki LS, White DA, Whitley CB,
Wilford BS, Yannicelli S, Young JM: Phenyl-
eketonuria scientific review conference: state of the science and future research needs.