Association of FEF_{25–75%} Impairment with Bronchial Hyperresponsiveness and Airway Inflammation in Subjects with Asthma-Like Symptoms

Mario Malerba^{a} Alessandro Radaeli^{b} Alessia Olivini^{a} Giovanni Damiani^{a} Beatrice Ragnoli^{b} Valentina Sorbello^{c} Fabio L.M. Ricciardolo^{c}

^{a}Department of Internal Medicine, University of Brescia, Spedali Civili di Brescia, and
^{b}Emergency Department, Spedali Civili di Brescia, Brescia, and
^{c}Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, Orbassano, Italy

Key Words
Forced expiratory flow at 25 and 75% of the pulmonary volume · Fractional exhaled nitric oxide · Bronchial asthma · Sputum eosinophilia · Bronchial hyperresponsiveness

Abstract

Background: Forced expiratory flow at 25 and 75% of the pulmonary volume (FEF_{25–75%}) might be considered as a marker of early airway obstruction. FEF_{25–75%} impairment might suggest earlier asthma recognition in symptomatic subjects even in the absence of other abnormal spirometry values. Objectives: The study was designed in order to verify whether FEF_{25–75%} impairment in a cohort of subjects with asthma-like symptoms could be associated with the risk of bronchial hyperresponsiveness (BHR) and with airway inflammation expressed as fractional exhaled nitric oxide (FeNO) and eosinophil counts in induced sputum. Methods: Four hundred adults with a history of asthma-like symptoms (10.5% allergic) underwent spirometry, determination of BHR to methacholine (PD_{20}FEV_{1}), FeNO analysis and sputum induction. FEF_{25–75%} <65% of predicted or <–1.64 z-score was considered abnormal. Results: All subjects had normal FVC, FEV_{1} and FEV_{1}/FVC, while FEF_{25–75%} was abnormal in 27.5% of them. FEF_{25–75%} (z-score) was associated with PD_{20}FEV_{1} (p < 0.001), Feno (p < 0.001) and sputum eosinophils (p < 0.001). Patients with abnormal FEF_{25–75%} showed higher levels of FeNO and eosinophils in induced sputum than did patients with normal FEF_{25–75%} (p < 0.01 and p < 0.01, respectively). Subjects with abnormal FEF_{25–75%} had an increased probability of being BHR positive (OR = 13.38; 95% CI: 6.7–26.7; p < 0.001). Conclusions: Our data show that abnormal FEF_{25–75%} might be considered an early marker of air-flow limitation associated with eosinophilic inflammation and BHR in subjects with asthma-like symptoms, indicating a role for FEF_{25–75%} as a predictive marker of newly diagnosed asthma.

Introduction

Small airways seem to be involved in asthma pathogenesis [1, 2]. Recently, according to this idea, Perez et al. [3] demonstrated that, among moderate-to-severe asthmatics, patients with only small airway obstruction (compared to those with proximal airway obstruction) showed no correlations between small airway obstruction and...
asthma history, scores of dyspnoea, asthma control or drug compliance. These conclusions would imply an underestimation, in treated asthmatic patients, of small airway dysfunction in routinely used lung function testing [3]. Forced expiratory flow at 25 and 75% of the pulmonary volume (FEF25–75%) is defined as the mean forced expiratory flow during the middle half of the FVC and measures average flow rates on an FVC segment that includes flow from medium-to-small airways [4]. FEF25–75% indicates the status of the medium-sized and small airways particularly in subjects with normal FEV1 and FEV1/FVC [4, 5]. FEF25–75% varies significantly in healthy subjects and is considered abnormal when it reaches values <65% of predicted [6–8]. Muñoz-López et al. [9] pointed out that FEF25–75% is more appropriate than FEV1 for evaluating bronchial hyperresponsiveness (BHR) to methacholine and for indicating small airway impairment earlier in subjects with asthma and/or allergic rhinitis. Compromised FEF25–75% has been associated with BHR in patients with allergic rhinitis [10] and in subjects with respiratory symptoms suggestive of bronchial asthma [11]. BHR is the hallmark of bronchial asthma, and in particular BHR to indirect stimuli is related to the degree of airway inflammation (especially eosinophilic infiltration) [12]. Furthermore, in children with allergic rhinitis/asthma, abnormal FEF25–75% has been associated with elevated levels of fractional exhaled nitric oxide (FeNO) [13], which is primarily derived from the respiratory epithelium and seems to reflect eosinophilic airway inflammation [14]. FeNO measurement is a highly reproducible, safe, sensible, simple and rapid test [15–17]. Ciprandi et al. [18] demonstrated a strong and negative correlation between FeNO and BHR in asthmatic children; these results confirmed the existence of a link between airway inflammation and BHR. Tossa et al. [19] as well proved that an increased FeNO level was associated with BHR among apprentices.

The aim of our study was to verify whether abnormal FEF25–75% in a cohort of subjects with asthma-like symptoms and normal FEV1 and FEV1/FVC could be associated with BHR and the degree of airway inflammation.

Subjects and Methods

Patients

From November 2011 to November 2013, 400 consecutive adult patients referred to the Respiratory Medicine Unit of the Department of Internal Medicine, University of Brescia, were studied in an outpatient setting. The patients complained of symptoms consistent with bronchial asthma: cough, chest tightness, dyspnoea or wheezing with nocturnal awakenings for >3 weeks with a normal chest X-ray and spirometry (FVC, FEV1 and FEV1/FVC) [20]. The exclusion criteria were use of any medication for cough, upper respiratory infection during the previous 6 weeks, use of corticosteroids during the previous 6 weeks, current smoking, any significant medical condition, a prior asthma diagnosis and the usual contraindications to methacholine challenge tests. The study was approved by the local ethics committee, and all participants provided written informed consent.

Recruited patients underwent the following procedures: clinical examination; symptom evaluation; skin prick testing; pulmonary function tests; determination of BHR to methacholine (methacholine challenge test); FeNO analysis; sputum induction, and eosinophil count.

Skin Prick Test

Allergy was assessed by skin prick test positivity to the most common aeroallergens as stated by the European Academy of Allergy and Clinical Immunology [21].

Pulmonary Function Tests

Spirometry and maximal full flow-volume curves were obtained using a pneumotachograph with a volume integrator (CAD/Net system 1070; Medical Graphics Corporation, St. Paul, Minn., USA). The pulmonary function tests were performed following American Thoracic Society criteria [22]. All indices (FVC, FEV1, FEV1/FVC and FEF25–75%) were expressed as percent of predicted normal and z-scores. Predicted values and z-scores for the various indices were derived using prediction equations from the Global Lung Function Initiative (GLI-2012; http://www.lungfunction.org/) [23]. In particular, FEF25–75% was categorized as (1) <65% of predicted or <–1.64 z-score (abnormal values) or (2) >65% of predicted or between –1.64 and +1.64 z-score (normal values) [23]. FEF25–75% categorization by both criteria (% predicted and z-score) gave equal results. Only baseline or pre-bronchodilator data were analysed in the study.

Bronchial Hyperresponsiveness

The methacholine challenge test was performed according to international guidelines as a dose-response curve by increasing (doubling) doses of methacholine chlorohydrate every 3 min. Results were expressed as cumulative doses of methacholine provoking a 20% fall in FEV1 (PD20). A methacholine challenge test result was considered positive if the PD20 was <16.00 mg/ml [24].

Fractional Exhaled Nitric Oxide

FeNO was determined with a high-resolution chemiluminescence NO analyser (Ecomedics AG Analyzer CLD88; Dürrnent, Switzerland), whose limit of detection was 0.06 ppb, with a measurement range reaching 100 ppb. The measurements were performed in accordance with the ATS recommendations using a standardized procedure for on-line measurement of exhaled NO in adults [25]. FeNO values between 4 and 20 ppb were considered within normal limits according to literature consensus, identifying 20 ppb as the cut-off point for a positive result [26].

Sputum Induction

After baseline FEV1 and FVC measurements, the subjects were pre-treated with inhaled salbutamol (200 μg by metred-dose inhaler) and 10 min later inhaled a hypertonic (4.5%) nebulized ster-
ile saline solution for 3 periods of 5 min at most by means of an ultrasonic nebulizer (Ultraneb 2000; DeVilbiss, Somerset, Pa., USA). Nebulization was discontinued if one of the following symptoms occurred: wheezing, chest tightness or moderate-to-severe dyspnoea. Sputum was processed as previously reported [27]. The cut-off for an abnormal result was considered a sputum eosinophil count >3% (percentage of cells) [28].

Statistical Analysis
Values are expressed as medians (minimum–maximum) for continuous variables and as numbers and percentages for categorical variables. Spearman’s rank method was applied if variables were not normally distributed. In order to obtain reliable assessments of the relationship between FEF25–75% and the other variables, FEF25–75% was considered both a continuous and a categorical variable.

BHR was categorized as ‘negative’ (threshold ≥16.0 mg/ml) or ‘positive’ (threshold <16.0 mg/ml) [24]. The χ² test was used to test the analysed categorical variables. The Mann-Whitney test was used to assess differences between categorical and continuous variables. OR for an effect of FEF25–75% on BHR and relative 95% CI were not normally distributed. In order to obtain reliable assessment of the relationship between FEF25–75% and the other variables, FEF25–75% was considered both a continuous and a categorical variable.

BHR was categorized as ‘negative’ (threshold ≥16.0 mg/ml) or ‘positive’ (threshold <16.0 mg/ml) [24]. The χ² test was used to test the analysed categorical variables. The Mann-Whitney test was used to assess differences between categorical and continuous variables. OR for an effect of FEF25–75% on BHR and relative 95% CI were not normally distributed. In order to obtain reliable assessment of the relationship between FEF25–75% and the other variables, FEF25–75% was considered both a continuous and a categorical variable.

Results
Demographic, functional and biological patient characteristics are shown in table 1; the numbers of males and females were equally balanced, and patients were ex-smokers or non-smokers, with respiratory symptoms during the previous 6 months (symptoms might have been absent at the time of enrolment). Forty-two patients (10.5%) were sensitized to perennial and/or pollen allergens. Concerning spirometric parameters, in all subjects FVC, FEV1 and FEV1/FVC were within normal reference ranges, while FEF25–75% was abnormal in 27.5% of the subjects, as extrapolated by percent of predicted or z-score data (a comparison of the data between subjects with normal and those with abnormal FEF25–75% is shown in table 2). The median value of FeNO was 34.2 ppb (12–80), and the median sputum eosinophil count was 4.32 cells (0.0–21.0); 176 patients (42.0%) were negative to BHR (table 1). No significant differences in demographic or functional and biological data were observed when grouping patients according to gender, age, atopy or smoking habit.

| Table 1. Patients’ demographic, functional and biological characteristics |
|---------------------------------|------------------|------------------|
| Age, years | 29.6 (17.8–41.4) |
| Gender F/M | 226/174 (56.5/43.5) |
| Smoking | |
| Non-smoker | 323 (80.75) |
| Ex-smoker | 77 (19.25) |
| Current smoker | 0 (0) |
| Pack-years | 2.7 (0–3.2) |
| Allergy | 42 (10.5) |
| FVC, % predicted | 106.99 (81.8–120.7) |
| FEV1, % predicted | 104.38 (82.6–116.5) |
| FEF25–75%, % predicted | 93.55 (20.0–190.0) |
| FEF25–75% (z-score) [range] | –0.398 (1.66) [–4.54–3.48] |
| FEF25–75% category (by % predicted or z-score) |
Normal	290 (72.5)
Abnormal	110 (27.5)
BHR, mg/ml	14.10 (0.10–16.00)
BHR category	
Negative (>16 mg/ml)	176 (44.0)
Positive (<16 mg/ml)	224 (56.0)
FeNO, ppb	34.21 (12–80)
Sputum eosinophils, %	4.32 (0.00–21.01)

Data are expressed as medians (minimum–maximum) or n (%) unless indicated otherwise.

A significant moderate positive correlation between BHR (expressed as PD20FEV1 to methacholine) and FEF25–75%, z-score (Spearman’s coefficient = 0.339, p < 0.001; fig. 1) and percent of predicted (table 3) was noted, despite the wide scattering of data due to the large sample size. Significant strong negative correlations were observed between FEF25–75% (z-score) and both FeNO (fig. 2; table 3) and sputum eosinophil count (fig. 3; table 3) (Spearman’s coefficient = –0.729, p < 0.001, and Spearman’s coefficient = –0.813, p < 0.001, respectively) as well as between BHR and both FeNO (Spearman’s coefficient = –0.851, p < 0.001; fig. 4; table 3) and sputum eosinophil count (Spearman’s coefficient = –0.760, p < 0.001; table 2). Finally, a strong positive correlation was found between FeNO and sputum eosinophil count (Spearman’s coefficient = –0.944, p < 0.001; table 3).

Patients with positive BHR had a median FeNO value of 46.3 ppb (12–80); this result was significantly different (p < 0.001) from that of BHR-negative patients, who showed a lower median value of 19.4 ppb (14–32). Similarly, patients with abnormal FEF25–75% had significantly (p < 0.001) higher values of FeNO [53.55 ppb (25–80)] than patients with normal FEF25–75% [21.60 ppb (12–61)], as shown in table 2. Moreover, the sputum eosinophil
count in BHR-negative and normal-FEF25–75% patients was significantly lower than that in BHR-positive and abnormal-FEF25–75% patients [0.6 cells (0–3.1) in BHR-negative vs. 6.5 cells (0.0–21.0) in BHR-positive patients, p < 0.001; 1.2 cells (0.0–7.8) in normal-FEF25–75% vs. 9.89 cells (2.1–21.0) in abnormal-FEF25–75% patients, p < 0.001]. Of the BHR-positive and BHR-negative patients, 13.4 and 6.8%, respectively, were allergen sensitized, and this difference was statistically significant (χ² test, p = 0.03). Subjects with abnormal FEF25–75% had an increased probability of being BHR positive (OR = 13.38; 95% CI: 6.7–26.7; p < 0.001) (table 4).

Discussion

In the present study, a cohort of subjects with asthma-like symptoms and normal FVC, FEV₁ and FEV₁/FVC showed a relationship between FEF25–75% values and BHR to methacholine – the hallmark of bronchial asthma – and between FEF25–75% values and markers of eosinophilic airway inflammation such as FeNO and sputum eosinophils. Moreover, patients with abnormal FEF25–75% which is considered a reliable marker of early airflow limitation [4–8], had higher FeNO and sputum eosinophil levels than patients with normal FEF25–75%. We also pointed out that subjects with asthma-like symptoms and abnormal...
FEF_{25–75%} had a high probability of being BHR positive (OR = 13.38). These findings strengthen the hypothesis that early airflow limitation, expressed as abnormal FEF_{25–75%}, is probably related to eosinophilic airway inflammation. In the literature, FEF_{25–75%} was validated as a marker able to predict high FeNO levels in asthmatic children [13] and correlated with FeNO in terms of percent change in improvement after 6 weeks of inhaled corticosteroid treatment in controlled asthmatic children [29]. In addition, Rao et al. [30] observed that in children, a low FEF_{25–75%} associated with a normal FEV_{1} is linked to increased asthma severity, systemic steroid use and asthma exacerbations. Using the percent change in FEF_{25–75%} from baseline might be helpful in identifying...
bronchodilator responsiveness in asthmatic children with normal FEV₁ [30]. In our study, FEF₂₅–₇₅% expressed both as z-score and percent of predicted, is strongly related to sputum eosinophil and FeNO values in subjects with asthma-like symptoms. In addition, subjects with abnormal FEF₂₅–₇₅% showed a higher number of sputum eosinophils and higher FeNO values than subjects with normal FEF₂₅–₇₅%, suggesting that FEF₂₅–₇₅% could be considered a sensitive spirometric marker associated with eosinophilic airway inflammation in newly diagnosed adult asthma cases with normal FEV₁ and FVC.

We found a marked correlation between FeNO and sputum eosinophils confirming previous reports on the capability of FeNO to reflect eosinophilic airway inflammation at mucosal and luminal levels [14, 31]. In particular, concerning this aspect, we point out that blockade of interleukin-5, a key cytokine in eosinophil differentiation/maturation in the bone marrow as well as in recruitment/activation at sites of allergic inflammation, was expected to deplete eosinophils and improve symptoms in subjects with asthma. Surprisingly, a humanized monoclonal antibody against interleukin-5 (mepolizumab) substantially reduced eosinophil levels in peripheral blood and sputum in relation to a reduction of asthma exacerbations but did not appear to have pharmacodynamic effects on FeNO levels [32, 33]. Taken together, these data suggest (1) that although targeting eosinophils can significantly reduce the rate of asthma exacerbations, the precise roles of eosinophils in the biology of asthma are still unclear, and (2) that FeNO is mainly dependent on epithelium-derived inducible NO synthase production, which could be influenced by different stimuli/triggers such as viruses and eosinophil-derived mediators in the airways [34]. Thus, FeNO might be considered a marker of asthmatic airway dysfunction not only related to airway eosinophilia.

FEF₂₅–₇₅% has been found to correlate with functional imaging assessment of small airway function [35] as well as indices of ventilation heterogeneity, which are markers of peripheral airway function, obtained with multiple nitrogen washout in normal subjects [36] and with double-tracer gas single-breath washout in mild asthmatics [37]. FEF₂₅–₇₅% percent of predicted has been demonstrated to correlate better with air trapping in asthmatic subjects than do FEV₁ percent of predicted and FEV₁/FVC percent of predicted [6]. Furthermore, in the archetypal small airways disease – that is, obliterative bronchiolitis – FEF₂₅–₇₅% is considered the most sensitive functional marker of early diagnosis [38, 39]. Finally, a paper by Bergeron et al. [40] concerning airway remodelling showed a significant reduction in the expression of smooth muscle α-actin in the small airways by analysing transbronchial biopsy specimens before and after 6 weeks of treatment with extra-fine inhaled corticosteroid. In fact, α-actin expression was correlated with improved FEF₂₅–₇₅% suggesting an association between FEF₂₅–₇₅% values and histology. Thus, on the basis of all this evidence, we may speculate that in the present study, abnormal FEF₂₅–₇₅% in symptomatic subjects with normal FEV₁ can be considered a marker of early airway obstruction without involvement of the proximal/central airways. Pisi et al. [41] suggested investigating small airway dysfunction in asthmatic patients with normal FEV₁ values by using an impulse oscillometry system as an alternative to spirometry.

In our population, abnormal FEF₂₅–₇₅% was associated with an increased BHR as measured by OR, indicating that FEF₂₅–₇₅% could be a simple and non-invasive marker of suspected BHR in patients with asthma-like symptoms and normal spirometric values. Small airways disease, assessed by peripheral airway resistance, has recently been associated with excessive bronchoconstriction in asthmatic patients [42]. Our data support the role of FEF₂₅–₇₅% as a marker of early airway obstruction and as a risk factor for BHR positivity and severity in agreement with previous reports on allergic [43–45] and rhinitic subjects [10]; therefore, in clinical practice a more rational approach should also include measurements of FEF₂₅–₇₅% [46]. In agreement with other authors, we suggest a combined approach towards asthma follow-up, involving clinical aspects, functional parameters (FEF₂₅–₇₅%) and inflammatory biomarkers (FeNO) [46–48].

In the current study, a negative correlation between BHR and FeNO/sputum eosinophils has been shown; in addition, BHR-positive symptomatic subjects showed higher FeNO than BHR-negative subjects. BHR to non-specific bronchoconstrictor stimuli is a key feature of asthma and could be associated with the inflammatory process of the disease. Several studies have shown that BHR to indirect stimuli such as bradykinin, mannitol and adenosine is related to FeNO or eosinophilic inflammation [12, 49–51], whilst a relationship between BHR and direct stimuli such as methacholine and FeNO or eosinophilic inflammation exists [19, 52] but is expressed to a lesser extent [51, 53] or remains controversial [49, 50, 54, 55]. Finally, on the basis of the present data on FeNO in BHR-positive compared to BHR-negative patients, it can be postulated that FeNO might also be a marker potentially able to identify BHR-positive patients with new-onset asthma, and that the link between BHR and FeNO/
Eosinophilic inflammation is strictly involved in the pathogenesis of early airflow limitation as detected in newly diagnosed adult asthma cases.

In this study, we also found a small number of subjects with asthma-like symptoms to have allergen sensitization (10.5%); in particular, the number of allergic subjects with positive BHR was significantly higher than that of allergic subjects with negative BHR. These results are in agreement with those of a previous study which demonstrated that the attributable fraction of new-onset asthma (at an age of 20–44 years) to atopy varied from 12 to 21%, indicating that only a relatively small proportion of new-onset asthma in adults is linked to atopy [56]. In addition, a study based on the Italian population (aged 20–44 years) showed that the prevalence of asthma and asthma-like symptoms has increased in the past 20 years, and that this increase has mainly been due to non-atopic subjects, suggesting that this trend might reflect changes in population exposures [57].

The clinical relevance of the present study is based on an adequate number of enrolled patients. Unfortunately, in this study, data concerning the clinical diagnosis of persistent/seasonal rhinitis were not collected in the medical records, and thus the authors were not able to correlate this major risk factor for asthma [58] with the analysed variables. Another limitation of this study is intrinsically connected with the study type (cross-sectional), which does not estimate patients’ progression; however, this limitation is well balanced by the large size of the chosen sample. An additional limitation might be the absence of post-bronchodilator data, even if reversibility testing is not mandatory for subjects with an FEV₁ >80% of predicted. Despite the fact that the weak reproducibility of FEF₂₅₋₇₅% measurements represents one of the most important limitations for clinical use, we want to emphasize that the measure of FEF₂₅₋₇₅% is the index of early airflow limitation most widely available in routine practice for identifying new-onset asthmatics [59]. Finally, it might have been useful to have other measures of small airway function, such as an impulse oscillometry system, nitrogen washout and plethysmography; however, these tools have been unavailable in our own routine clinical practice.

In conclusion, the present study shows that abnormal FEF₂₅₋₇₅% might be considered an early functional marker of airflow limitation associated with eosinophilic inflammation and BHR in symptomatic subjects, suggesting a predictive role as a marker of newly diagnosed asthma.

Financial Disclosure and Conflicts of Interest

The authors declare no conflict of interest.

References

7 Lipworth B: Targeting the small airways asthma phenotype: if we can reach it, should we treat it? Ann Allergy Asthma Immunol 2013; 110:233–239.
10 Ciprandi G, Cirillo I: Forced expiratory flow between 25% and 75% of vital capacity may be a marker of bronchial impairment in allergic rhinitis. J Allergy Clin Immunol 2011;127:549; discussion 550–551.

212
Respiration 2016;91:206–214
DOI: 10.1159/000443797

Malerba/Radaelli/Olivini/Damiani/
Ragnoli/Sorbelli/Ricciardolo
Abnormal FEF25–75% and Airway Inflammation

Respiration 2016;91:206–214
DOI: 10.1159/000443797

45 van der Wiel E, Postma DS, van der Molen T, Schiphof-Godart L, Ten Hacken NH, van den Berge M: Effects of small airway dysfunction on the clinical expression of asthma: a focus on asthma symptoms and bronchial hyperresponsiveness. Allergy 2014;69:1681–1688.

51 Perzanowski MS, Yao Y: Exhaled nitric oxide and airway hyperresponsiveness to adenosine 5′-monophosphate and methacholine in children with asthma. Int Arch Allergy Immunol 2015;166:107–113.

