Serous Cystadenocarcinoma of the Pancreas: Clinical Features and Management of a Rare Tumor

Timothy J. Van Dyke a Frederick C. Johlin b Andrew M. Bellizzi c James R. Howe a

Departments of a Surgery, b Medicine, and c Pathology, University of Iowa Carver College of Medicine, Iowa, USA

Introduction

Serous neoplasms of the pancreas are generally considered to be benign, whereas mucin-producing cystic neoplasms have a well-established malignant potential. The first case of metastatic serous cystadenocarcinoma was documented by George et al. [1], and there has since been a growing body of evidence demonstrating the malignant potential of this neoplasm, including cases describing neural, vascular, or lymphatic invasion, direct invasion into surrounding structures, and distant metastasis [1–5]. Serous cystadenocarcinomas are exceedingly rare, with estimates of malignant conversion of cystadenomas ranging between 1 and 3%, and only 15 cases described to date [6, 7].

Conclusions:
Serous cystic neoplasms of the pancreas >4 cm have malignant potential and therefore should be considered for surgical management.

Key Words
Cystic pancreatic neoplasms · Serous cystadenocarcinoma · Pancreatic cystadenoma · Metastatic cystic neoplasms of the pancreas

Received: November 25, 2015
Accepted: February 14, 2016
Published online: March 22, 2016
In this study, we present a 78-year-old man with serous cystadenocarcinoma of the pancreas with liver metastases treated with distal pancreatectomy and liver ablation, who went on to develop new liver metastases 5 years after the initial operation. We also review the literature to help appreciate the rarity of this neoplasm and to identify features that are associated with malignancy.

Case Report

The patient is a 78-year-old male who was incidentally found to have a large pancreatic mass on chest CT done for a research study of COPD. An abdominal and pelvic CT was then performed, which revealed a 16 cm, multi-cystic mass with smooth, lobulated margins replacing the body and tail of the pancreas and causing occlusion of the splenic vein. The mass appeared heterogeneous with areas of focal enhancement, low attenuation areas, and several small nodular calcifications (fig. 1). There were left upper quadrant gastric varices, but no evidence of SMV or SMA involvement, nor direct invasion of the liver, spleen, or stomach. There was no sign of peritoneal nodules or ascites to suggest peritoneal carcinomatosis. However, 2 low-attenuation liver lesions were noted in the periphery of the liver, one measuring 5 cm in segment 7 (fig. 2) and the other 1 cm in segment 4, which were suspicious for metastasis.

A CT-guided core biopsy of the cystic lesion in the distal pancreas and the 5 cm liver lesion were then performed. The pancreatic tissue revealed a multicystic lesion with areas of thick, fibrous septae. The cysts were lined by attenuated cuboidal epithelium, which was predominantly in a single layer. The cells were relatively small in size with intermediate to low nucleocytoplasmic ratio. The nuclei were oval with dense chromatin. Abundant clear cytoplasm was present and mitotic figures were not noted. The neoplastic cells were intensely positive for low molecular weight cytokeratin. CT-guided biopsy of the liver (fig. 3) was histologically identical to the accompanying pancreatic biopsies. Based on these findings, the diagnosis of serous cystadenocarcinoma of the pancreas with metastasis to the liver was made. Further workup included an endoscopic ultrasound, which revealed an irregular, microcystic mass with poorly defined borders, extending from the pancreatic neck to the tail.

The patient underwent distal pancreatectomy, splenectomy, cholecystectomy, and radiofrequency ablation of the 2 liver lesions. Operative exploration revealed a large, firm and multicystic mass extending from the neck of the pancreas to the spleen. The spleen also had abnormal-appearing lesions on it and these lesions resembled the pancreatic mass. The mass was found to be adherent to the transverse mesocolon. There was evidence of mass penetration through the mesocolon for which resection of a portion of the transverse mesocolon was performed. Intra-operative US revealed a large lesion in segment 7 of the liver, and 2 additional small lesions in segments 4-b and 5, near the porta hepatitis. These lesions

Fig. 1. Abdominal CT demonstrating a heterogeneous, 16 cm, multi-cystic mass replacing the body and tail of the pancreas with low attenuation areas, several small calcifications, and smooth lobulated margins.

Fig. 2. Abdominal CT demonstrating the larger of the 2 metastases in the periphery of the right hepatic lobe (black arrow), and the top of the primary lesion (white arrow).
were all treated with radiofrequency ablation with ultrasound guidance.

Postoperative pathology demonstrated a 15.5 × 12.0 × 10.5 cm bosselated, irregular red, white, and yellow mass. The mass was sectioned to reveal tan and red variegated cystic and solid cut surfaces, a 6 cm tan-yellow central scar, and tan fibrous soft tissue trabeculations throughout. Microscopic examination demonstrated macro and micro-cystic structures lined by glycogen-rich clear cells arranged in a single cuboidal layer without atypia or mucin production. The cystic neoplasm was well-circumscribed with a fibrotic pseudocapsule composed of lamellated hyalinized connective tissue (fig. 4a). Rare foci of perineural invasion were noted (fig. 4b), while lymphovascular space invasion was not identified.

Fig. 3. Metastatic serous cystadenocarcinoma to the liver (white arrow). The tumor is histologically identical to that in the pancreas and is indistinguishable from a typical serous cystadenoma. Benign hepatic parenchyma is present at right (black arrow; H&E, 200×).

Fig. 4. Aggressive histopathologic features in serous cystadenocarcinoma: a tumor (*) invades into the peripancreatic fat to encircle the splenic artery (H&E, whole mount). b Focus of perineural invasion, with nerve in the center and serous cystadenoma cells surrounding it (H&E, 400×). Otherwise, the cytoarchitecture of this tumor is indistinguishable from a typical serous cystadenoma.
The patient was followed closely with CT scans of the abdomen and abdominal ultrasounds. An ultrasound performed 54 months postoperatively demonstrated a new liver lesion, and further evaluation with MRI revealed a total of 3 new liver lesions consistent with metastases (a 1.5 × 1.6 × 1.6 cm lesion in segment 8, a 1.0 × 1.2 × 0.7 cm subcapsular lesion in segment 6, and a 1.5 × 2.5 cm lesion in segment 5). A biopsy performed of one of these lesions demonstrated the same histology as that of the original primary tumor. He underwent open microwave ablation of these lesions with ventral hernia repair. A follow-up ultrasound 4 months and CT 10 months postoperatively revealed the ablation sites, but no new liver lesions. Unfortunately, an MRI performed 15 months after this second surgery revealed 9 new foci in the right lobe concerning for metastases, the largest lesion being 1.5 cm in size. The patient, now 84 years of age (6 years and 1 month after the first operation) and otherwise asymptomatic, elected to be observed at this time.

Methods

To identify previous reports of pancreatic serous cystadenocarcinoma, the PubMed database was searched using the keywords ‘pancreas’ and ‘serous cystadenocarcinoma’. Bibliographies from these reports and existing reviews of the literature were also scrutinized to identify further relevant reports. Cases without documentation of malignancy and those that were considered duplicates were excluded.

Results

Twenty-nine articles were included in the analysis with a total of 35 cases described of metastatic or locally advanced pancreatic serous cystadenocarcinoma or cystadenoma. Case reports were then subdivided into 2 groups: those which included metastases to the liver, peritoneum, or lymph nodes (table 1) and those which exhibited local invasion only (table 2). Fifteen cases described distant metastases: 10 cases with liver metastases, 2 cases with liver and retroperitoneal metastases, one case with liver and peritoneal metastases, and one case with nodal metastases. One particularly aggressive case reported metastases to the lungs, bone marrow, adrenal glands, and lymph nodes [2]. In cases in which the primary lesion diameter was reported, all lesions were >4 cm, with a range 4–19 cm, with an average diameter of 11.75 cm. Twenty cases did not describe metastasis, but did demonstrate signs of potentially aggressive behavior, such as neural, lymphatic, vascular or local invasion. These tumors had an average diameter of 8.9 cm (range 2.5–12 cm), and 9 of 10 lesions were >4 cm. The most common features seen in these locally advanced tumors were invasion into the spleen or soft tissues, perineural invasion, or vascular invasion.

Discussion

The diagnosis of cystadenocarcinoma is established by the clinical behavior of the neoplasm, which may include synchronous or metachronous distant metastases to the liver, peritoneum, or lymph nodes. This case represents the second in which the diagnosis of serous cystadenocarcinoma was made preoperatively, after Wasel et al. [8] described a case in which the diagnosis was also made by percutaneous biopsy. In this case and in the previous metastatic cases, there were no reliable histological or pathological characteristics seen in the primary tumor which allowed for differentiation of a malignant vs. benign neoplasm.

Local invasion, including vascular invasion, perineural invasion, or direct invasion into lymph nodes, spleen, duodenum, or stomach is not considered sufficient for the diagnosis of malignancy [9]. Rather, it has been suggested this locally aggressive behavior is indicative of increased proliferative ability and malignant potential [10]. In one review of 158 cases of resected serous cystic neoplasms, three were described as having ‘locally aggressive disease’ on histology; of these three, one went on to develop liver metastases 13 years after the initial operation was performed [6].

The rate of malignant transformation of asymptomatic lesions is very small, with estimates falling between 1 and 3% [6, 7]. Therefore, it is difficult to determine which cases of asymptomatic serous cystadenoma pose the highest risk of developing metastatic disease. Review of the literature demonstrates that all cases of metastatic serous cystadenocarcinoma had a diameter >4 cm (table 1). Tseng [11] suggested that resection of serous cystadenoma should be considered when the lesion has a diameter >4 cm or is symptomatic in good surgical candidates. A European expert consensus statement recommends that surgical intervention is indicated if the lesion is symptomatic; however, tumor size was not considered to be an important factor [12]. If surgical resection is indicated, procedures to remove pancreatic cystic lesions are generally well tolerated and have low mortality in high volume centers (≤1%) [13].

Review of the literature revealed 15 metastatic cases (table 1), although the patient described in Widmaier et al. [4] may have also been included in Schmidt-Rohlfing et al. [14], and the one described in Wu et al. [15] may have been also included in Galanis et al. [6] (since these studies derive from the same institutions). These cases demonstrate that even in the presence of initial or recurrent metastasis, the prognosis remains encouraging, with
Table 1. Characteristics of metastatic serous cystadenocarcinoma of the pancreas

<table>
<thead>
<tr>
<th>Case</th>
<th>Author</th>
<th>Year</th>
<th>Size, cm</th>
<th>Age/sex</th>
<th>Presenting symptoms/signs</th>
<th>Metastases</th>
<th>Treatment</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>George et al. [1]</td>
<td>1989</td>
<td>11</td>
<td>70/M</td>
<td>GI bleeding from gastric varices</td>
<td>Liver metastases; local invasion of stomach, spleen</td>
<td>Distal pancreatectomy</td>
<td>Intraoperative death from blood loss</td>
</tr>
<tr>
<td>2</td>
<td>Friedman</td>
<td>1990</td>
<td>19</td>
<td>74/F</td>
<td>Flank pain, weight loss, abdominal mass</td>
<td>Metastases to liver, lungs, bone, adrenal glands, and lymph nodes</td>
<td>None</td>
<td>Dead of disease</td>
</tr>
<tr>
<td>3</td>
<td>Okada et al. [23]</td>
<td>1991</td>
<td>12</td>
<td>63/F</td>
<td>Abdominal pain</td>
<td>Liver metastases 4 years postoperative</td>
<td>Distal pancreatectomy</td>
<td>Alive without recurrence</td>
</tr>
<tr>
<td>4</td>
<td>Yoshimi et al. [24]</td>
<td>1992</td>
<td>12</td>
<td>63/F</td>
<td>Left upper quadrant abdominal mass, epigastric pain</td>
<td>Liver metastases 3 years postoperative</td>
<td>Distal pancreatectomy and splenectomy</td>
<td>Alive without recurrence</td>
</tr>
<tr>
<td>6</td>
<td>Ishikawa et al. [25]</td>
<td>1998</td>
<td>12</td>
<td>63/F</td>
<td>Abdominal pain</td>
<td>Liver metastases 3 years postoperative</td>
<td>Distal pancreatectomy Partial hepatectomy</td>
<td>NS</td>
</tr>
<tr>
<td>7</td>
<td>Eriguchi et al. [26]</td>
<td>1998</td>
<td>16</td>
<td>56/F</td>
<td>Abdominal mass</td>
<td>Liver metastases; recurrent liver metastases 9 years postoperative</td>
<td>Splenectomy and distal pancreatectomy + microwave ablation Partial resection and ablation of liver tumors 9 years later</td>
<td>Alive 10 years postoperative without additional recurrence</td>
</tr>
<tr>
<td>8</td>
<td>Wu et al. [15]</td>
<td>1999</td>
<td>NS</td>
<td>57/F</td>
<td>NS</td>
<td>Liver metastases; peritoneal metastases at second operation; diffuse liver metastases at last operation</td>
<td>Left lobe liver resection, pancreatectomy, cholecystectomy, splenectomy 8 years later; exploratory laparotomy and wedge liver biopsy 20 months later</td>
<td>NS</td>
</tr>
<tr>
<td>9</td>
<td>Strobel et al. [7]</td>
<td>2003</td>
<td>14</td>
<td>56/F</td>
<td>Abdominal pain, diarrhea, weight loss</td>
<td>Liver metastases</td>
<td>Pancreatoduodenectomy</td>
<td>Alive without recurrence</td>
</tr>
<tr>
<td>10</td>
<td>Galanis et al. [6]</td>
<td>2007</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>(1) Liver metastases (2) Locally aggressive disease at operation; recurred 1.3 years later with liver and retroperitoneal metastases</td>
<td>(1, 2) Resection of pancreatic tumor</td>
<td>(1) Extensive growth 1 year later (2) NS</td>
</tr>
<tr>
<td>11</td>
<td>Franko et al. [16]</td>
<td>2008</td>
<td>5</td>
<td>68/F</td>
<td>Duodenal erosion, abdominal pain, anemia weight loss, weakness</td>
<td>Liver metastases 3 years post-biopsy of primary lesion</td>
<td>Palliative care</td>
<td>Expired from local tumor progression and metastatic disease 45 months after initial presentation</td>
</tr>
<tr>
<td>12</td>
<td>Bano et al. [20]</td>
<td>2011</td>
<td>7</td>
<td>62/M</td>
<td>Epigastric pain, vomiting, anorexia, weight loss, fatigue, palpable mass, jaundice</td>
<td>Liver metastases; duodenal invasion</td>
<td>Pancreatoduodenectomy + microwave ablation, cystogastrostomy, cholecystectomy</td>
<td>Alive without recurrence 1 year postoperative</td>
</tr>
<tr>
<td>13</td>
<td>Bramis et al. [21]</td>
<td>2012</td>
<td>17</td>
<td>86/F</td>
<td>Abdominal pain from pre-pyloric ulcer perforation</td>
<td>Liver metastases; invasion into the stomach</td>
<td>Inoperable</td>
<td>Died 1 month later due to unrelated problems</td>
</tr>
<tr>
<td>14</td>
<td>Wasel et al. [8]</td>
<td>2013</td>
<td>12</td>
<td>68/M</td>
<td>Incidental finding</td>
<td>Liver metastases; retroperitoneal metastases</td>
<td>4 months of neoadjuvant chemotherapy, then observation (no surgery)</td>
<td>Asymptomatic 1 year after diagnosis</td>
</tr>
</tbody>
</table>

NS = Not specified. Table adapted and modified from Wasel et al. [8].
Table 2. Characteristics of pancreatic serous cystadenoma with locally aggressive features

<table>
<thead>
<tr>
<th>Case</th>
<th>Author</th>
<th>Year</th>
<th>Size, cm</th>
<th>Age/sex</th>
<th>Presenting symptoms/signs</th>
<th>Aggressive histologic features</th>
<th>Treatment</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kamei et al. [2]</td>
<td>1991</td>
<td>Multifocal, 10</td>
<td>72/F</td>
<td>Jaundice</td>
<td>Neural invasion; portal vein, bile duct obstruction (but not invasion)</td>
<td>Total pancreatectomy</td>
<td>NS</td>
</tr>
<tr>
<td>2</td>
<td>Ohta et al. [3]</td>
<td>1993</td>
<td>2.5</td>
<td>64/M</td>
<td>Incidental finding on CT</td>
<td>Vascular invasion</td>
<td>Enucleation of tumor</td>
<td>Alive without recurrence 9 months postoperative</td>
</tr>
<tr>
<td>3, 4</td>
<td>Siech et al. [27]</td>
<td>1998</td>
<td>NS</td>
<td>40, 75</td>
<td>NS</td>
<td>(1) Local infiltration</td>
<td>Pancreatectomy, total pancreatectomy</td>
<td>Early recurrence, NS</td>
</tr>
<tr>
<td>5</td>
<td>Abe et al. [28]</td>
<td>1998</td>
<td>12</td>
<td>71/F</td>
<td>Abdominal mass, fatigue,</td>
<td>Lymph node direct invasion, local invasion</td>
<td>Distal pancreatectomy, splenectomy</td>
<td>Alive without recurrence 2 years postoperative</td>
</tr>
<tr>
<td>6–9</td>
<td>Schmidt-Rohlfing et al. [14]</td>
<td>1998</td>
<td>NS</td>
<td>52–74</td>
<td>NS</td>
<td>(1) Local invasion of adrenal gland (2–4) NS</td>
<td>Distal pancreatectomy; total pancreatectomy; segmental resection; pancreaticoduodenectomy</td>
<td>NS</td>
</tr>
<tr>
<td>10, 11</td>
<td>Kimura and Makuuchi [29]</td>
<td>1999</td>
<td>5.3</td>
<td>53/F, 66/M</td>
<td>NS</td>
<td>(1, 2) Neural and stromal invasion</td>
<td>Distal pancreatectomy</td>
<td>(1, 2) Alive without recurrence 6 years postoperative</td>
</tr>
<tr>
<td>12</td>
<td>Horvath and Chabot [30]</td>
<td>1999</td>
<td>6</td>
<td>81/F</td>
<td>NS</td>
<td>NS*</td>
<td>Distal pancreatectomy + somatostatin</td>
<td>Alive 11 months postoperative</td>
</tr>
<tr>
<td>13</td>
<td>Matsumoto et al. [31]</td>
<td>2005</td>
<td>12</td>
<td>87/F</td>
<td>Abdominal mass</td>
<td>Colonic mesentry and splenic invasion</td>
<td>Distal pancreatectomy, splenectomy, colon resection</td>
<td>Alive without recurrence 10 months postoperative</td>
</tr>
<tr>
<td>14</td>
<td>Shintaku et al. [32]</td>
<td>2005</td>
<td>12</td>
<td>85/F</td>
<td>Incidental CT finding for</td>
<td>Splenic invasion; peripheral nerve invasion</td>
<td>Distal gastrectomy and distal pancreatectomy with splenectomy</td>
<td>Alive without recurrence 10 months postoperative</td>
</tr>
<tr>
<td>15</td>
<td>Friebe et al. [10]</td>
<td>2005</td>
<td>8</td>
<td>80/F</td>
<td>Abdominal pain, loss of</td>
<td>Splenic invasion</td>
<td>Distal pancreatectomy and splenectomy</td>
<td>Alive without recurrence 1 year postoperative</td>
</tr>
<tr>
<td>16</td>
<td>Gupta et al. [33]</td>
<td>2008</td>
<td>10</td>
<td>42/F</td>
<td>Abdominal mass, dyspepsia,</td>
<td>Focal invasion of cyst wall</td>
<td>Cyst removal with attached pancreas, spleen and colon</td>
<td>Alive without recurrence 2 years postoperative</td>
</tr>
</tbody>
</table>

Note: NS = Not specified; * = Data not available.
several long-term survivors (including the patient described in the current case). In these series, however, the risk of malignant transformation and pathological growth should not be ignored, as the presumably benign lesions may progress to inoperability, metastasis, and patient mortality. Franko et al. [16] described such a case where a 5 cm serous cystadenoma was observed due to splenorenal involvement; liver metastases developed 3 years after presentation, and the patient expired from local tumor progression 3 months after the diagnosis of metastatic disease was made.

Alternatives to surgical resection are limited, and there have been a limited number of reports of chemotherapy or radiotherapy for serous cystadenocarcinoma. Wasel et al. [8] reported giving 4 months of neoadjuvant chemotherapy to their patient without response (the specific regimen was not given), and the patient did not undergo operation. Experience with the more commonly malignant mucinous cystadenocarcinoma is also limited, with just a few reports. Björk Werner et al. [17] described 5 patients deemed to be unresectable being treated with gemcitabine-based regimens, with a mean survival of 11 months and a range of survival of 3–37 months. There has been one report of excellent response to gemcitabine-oxaliplatin, where the liver metastases disappeared with 13 cycles, allowing for primary tumor resection, and no recurrence at 22 months of follow-up [18]. Wood et al. [19] described 2 patients treated with 5-FU and radiotherapy with unresectable cystadenocarcinomas resulting in response, allowing for resection. These results may or may not be generalizable to patients with serous cystadenocarcinomas, but could be considered in cases thought to be unresectable.

The time elapsed from initial diagnosis of cystadenoma to the development of metastatic disease ranged from 3 months to 13 years [6, 20]. Long-term, consistent follow-up is imperative even with seemingly benign cases of serous cystadenoma. Bramis et al. [21] described a patient who was followed closely for 6 years, then lost to follow-up for 4 years, and finally presented with a perforated ulcer and a 17 cm inoperable mass.

Most cases of serous cystadenocarcinoma with metastatic disease had a slowly progressive clinical course, and the standard approach for small, asymptomatic lesions without concerning features on imaging (which include cyst >3 cm; thickened, enhancing walls; mural nodules; pancreatic duct diameter 5–9 mm, or abrupt change; and lymphadenopathy) is conservative management with close observation [22]. However, one unusually aggres-
pressive case was reported by Wu et al. [15] after >8 years of indolent disease and close follow-up, where the entire liv-
er parenchyma was replaced with diffuse metastatic dis-
ease over the course of 20 months.

All 15 cases of metastatic serous cystadenocarcinoma have been >4 cm in size (table 1), as have 16 out of 17 se-
rous cystadenoma cases with documented local invasion
(where sizes are given; table 2). Therefore, if a pancreatic
serous cystadenoma exceeds 4 cm, it should be treated as
if it has malignant potential. If the lesion is <4 cm, is as-
ymptomatic, and has no worrisome features of malign-
nancy on imaging, it can be observed. All cases should be
subject to prolonged follow-up, as metastatic disease
may present many years after the initial resection. Par-
ticularly close follow-up is suggested in cases that in-
volve patients who demonstrate signs of potentially ag-
gressive behavior on surgical pathology, including local
invasion, lymphovascular, or perineural invasion, as
these signs are associated with increased metastatic po-
tential.

References

3 Ohta T, Nagakawa T, Itoh H, Fonseca L, Mi-
yazaki I, Terada T: A case of serous cystade-
noma of the pancreas with focal malignant
6 Galanis C, Zamani A, Cameron JL, Camp-
bell KA, Lillemoe KD, Carapelle D, Chang D, Hruban RH, Yeo CJ: Resected serous cy-
tic neoplasms of the pancreas: a review of
158 patients with recommendations for
826.
7 Strobel O, Z’Graggen K, Schmitz-Winnenthal
FH, Friess H, Kappeler A, Zimmermann A, Uhl W, Büchler MW: Risk of malignancy in serous cystic neoplasms of the pancreas. Di-
8 Wasel BA, Keough V, Huang WY, Molinari
M: Histological percutaneous diagnosis of stage IV microcystic serous cystadenocarcino-
9 Campbell F, Verbeke C: Pathology of the Pan-
10 Friebe V, Keck T, Mattern D, et al: Serous cy-
tadenocarcinoma of the pancreas: man-
gement of a rare entity. Pancreas 2005;31:
182–187.
11 Tseng JF: Management of serous cystadeno-
ma of the pancreas. J Gastrointest Surg 2008;
12 Del Chiaro M, Verbeke C, Salvia R, Klöppel
G, Werner J, McKay C, Friess H, Manfredi R, Van Cutsem E, Lörh M, Segersvård R:
European experts consensus statement on
13 Gaujoux S, Brennan MF, Gonen M, D’Ange-
lica MI, DeMatteo R, Fong Y, Schattner M, DiMaio C, Janakos M, Jarnagin
WR, Allen PJ: Cystic lesions of the pancreas: changes in the presentation and management of 1,424 patients at a single institution over a
15-year time period. J Am Coll Surg 2011;212:
590–609; discussion 600–603.
14 Schmidt-Rohlfing B, Siech M, Mattfeldt T, Schoenberg MH, Beger HG: Cystic neo-
plasms of the pancreas: surgical therapy and chances for cure. Z Gastroenterol 1998;36:
939–945.
15 Wu CM, Fishman EK, Hruban RK, Schlott
WD, Cameron JL: Serous cystic neoplasm in-
volving the pancreas and liver: an unusual
clinical entity. Abdom Imaging 1999;24:75–
77.
625.
17 Bjökk Werner J, Sturesson C, Dawiskiba S,
Andersson R: Mucinous cystadenocarcinoma of the pancreas – outcome following different modes of treatment. Ann Gastroenterol 2011;
18 Obayashi K, Ohwada S, Sunose Y, Yamamoto
K, Igarashi R, Hamada K, Takeyoshi I, Horiu-
chi R: [Remarkable effect of gemcitabine-ox-
platin (GEMOX) therapy in a patient with advanced metastatic mucinous cystic neo-
plasm of the pancreas]. Gan To Kagaku Ryo-
20 Bano S, Upeti L, Puri SK, Chaudhary V, Sakaua P: Imaging of pancreatic serous cystad-
734.
21 Bramis K, Petrou A, Papalambros A, Man-
zelli A, Mantonakis E, Brennan N, Felekou-
as E: Serous cystadenocarcinoma of the pancreas: report of a case and manage-
ment reflections. World J Surg Oncol 2012;
10:51.
22 Tanaka M, Fernández-del Castillo C, Aday
V, Chari S, Falconi M, Jang JY, Kimura W,
Levy P, Pitman MB, Schmidt CM, Shimizu M,
Wolfgang CL, Yamaguchi K, Yamao K; Inter-
national Association of Pancreatologists: Inter-
national consensus guidelines 2012 for the
management of IPMN and MCN of the pan-
23 Okada T, Nonami T, Miwa T, Yamada F, Ando K, Tatamatsu A, Sugie S, Kondo T:
[Hepatic metastasis of serous cystadenocar-
cinoma resected 4 years after operation of
2723.
24 Yoshimi N, Sugie S, Tanaka T, Ajiin W, Bu-
25 Ishikawa T, Nakao A, Nomoto S, Hosono J,
Hamada A, Nonami T, Takagi H: Immunohis-
tochemical and molecular biological studies of serous adenocarcinoma of the pancreas. Pan-
creas 1998;16:40–44.
26 Eniguchi N, Aoyagi S, Nakayama T; Hara M,
Miyazaki T, Kutsami J, Jimi A: Serous cy-
tadenocarcinoma of the pancreas with liver me-
5:467–470.
27 Siech M, Tripp K, Schmidt-Rohlfing B, Matt-
feldt T, Widmaier U, Gansauge F, Görlich J, Beger HG: Cystic tumours of the pancreas: di-
agnostische accuracy, pathologic observations
and surgical consequences. Langenbecks
28 Abe H, Kubota K, Mori M, Ieki M, Minagawa
M, Noie T, Kimura W, Makuuchi M: Serous cystadenoma of the pancreas with invasive
growth: benign or malignant? Am J Gastroen-
29 Kimura W, Makuuchi M: Operative indica-
tions for cystic lesions of the pancreas with malignant potential – our experience. Hepa-