Minimally Invasive Surgery for the Treatment of Colorectal Cancer

W. Konrad Karcza William von Braunb

aDepartment of General, Visceral, and Transplant Surgery, Ludwig Maximilian University, Munich, Germany; bDepartment of Abdominal Surgery, Metro North Hospital and Health Service, Brisbane, Australia

Laparoscopic Surgery: Background

The main aim of minimally invasive surgery is to reduce intraoperative injury. This goal has occupied many surgeons, physicians, and scientists for over 100 years. As such, the history of laparoscopic surgery started in Dresden in 1901 when Kelling performed the first procedure of this kind. 8 years later, the internist Jacobsen published his first endoscopic diagnostics in the thorax and later on a human abdomen, and so keyhole surgery was born [1].

A quantum leap towards this goal occurred when the television started to be used for indirect observation. In 1972, Clarke patented, recorded, and published the first film of laparoscopic surgery [2], and the first laparoscopic appendectomy was performed by Semm at the University of Kiel in 1981 [3]. Over the years, the instruments needed for laparoscopy got better, smaller, and easier to use. With the development of staplers, laparoscopic surgery evolved even further, improving its quality and diversity.

Over the past few decades, laparoscopic surgery has gone through various evolutionary stages, which were certainly in line with the general industrial progress. At first, the hand- and laparoscopically assisted interventions were carried out. Later on, these methods evolved into totally intracorporeal techniques. As a next step forward, port quantity was further reduced, giving rise to single-port surgery. Recently, with the invention of mini-laparoscopy, a reduction in port sizes to 2 mm has been attempted. Due to these changes, the surgical armamentarium of many different laparoscopic techniques has now evolved to comprise many different modalities, such as hand-assisted laparoscopic surgery (HALS), laparoscopically assisted techniques, totally intracorporeal laparoscopic surgery (TILS), single-incision laparoscopic surgery (SILS), flexible laparoscopy (FLS), and robotically assisted laparoscopic surgery (RALS) [4].

Robotically assisted surgery was introduced, amongst other techniques, to increase the precision and quality of the performed operations, evolving from simple camera maneuvering to very...
complex movements, which could not be carried out by means of traditional laparoscopy. The development is still a working progress, which is evident by the appearance of new devices combining flexible endoscopy and laparoscopy, i.e. 'ANUBIS', 'Endo-Samurai', 'Notes/R', DDES, and 'Spider' [5–7]. This signaled the beginning of natural orifice transluminal endoscopic surgery (NOTES). It is worthwhile pointing out that, without adding computer stabilization and robotic assistance, all of these techniques would have achieved the end point in their development. It can also be said that natural orifice surgery procedures are capable of reducing postoperative pain and improving cosmetic results even further, as opposed to the other minimally invasive techniques [8].

Consequently, laparoscopic surgery is directly combined with the progress in video technology, whereby a better view had directly influenced the operation outcomes. The quality of view was initially radically improved through the introduction of high-definition television (HDTV – 1990) and then due to three-dimensional views and ultra-high definition (4K (four times HD)/8K/16K high dynamic range). Today, it is possible to get even higher resolution with the nano-pixel technology [9].

An even further enhancement of our perception could be achieved through certain artificial modalities. Optical-based techniques, for instance, can identify tumors in the surrounding tissue through specific optical properties, light absorption, and scattering, which are primarily influenced by biochemical and morphological tissue composition. Breaking down optical spectroscopy, several further techniques can be distinguished, such as diffuse reflectance spectroscopy and fluorescence spectroscopy. These techniques enable tissue characterization by measuring the spectral response after the tissue is illuminated with a particular spectral band of light. Growing neoplasm has different properties than the tissue it is derived from. Its metabolism and cell composition allow differentiating them from healthy tissue by using specific waves of light [10]. The method has been implemented in the endoscopic diagnostic of colorectal cancer, allowing easier identification of potential neoplasms, with sensitivity and specificity ranging from 75 to 90% [11, 12]. A natural expansion of this technique is the current attempt to implement the spectroscopy method into the operating theater. Preliminary data showed promising results [13]. This technique will allow better identification of cancer-free margins in order to reduce its local recurrence. There are more methods available that help distinguishing various tissues, e.g. photodynamic diagnostic, photosensitizer therapy, and use of laser light. The photodynamic therapy is a non-thermal approach, which can be used to produce localized tissue necrosis. It requires the systemic or topical administration of a photosensitizing agent, which is activated in situ by light of a specific wavelength to form reactive oxygen isotopes in the presence of molecular oxygen. The deployable agent used can represent any substance that reacts with a specific light length, although the most commonly used agent is 5-aminolevulinic acid. Currently, all trials are at animal stage but the preliminary results are promising [14]. The progress and diagnostic possibilities, also with genotyping, will lead to an early-stage diagnosis and possibly to an increase of flexible endoscopic therapeutic options. Imaging technologies are also further developing and will probably be combined with videosurgery in the near future [15].

The majority of doctors do accept the superiority of minimally invasive techniques for the management of benign conditions. Colorectal surgery is no exception to this rule. The subject of laparoscopic techniques in colorectal surgery raised a totally different question, which has been under discussion for many years. For example, the sigmoid colectomy is the most frequently performed laparoscopic colorectal procedure and is already very well accepted by patients. Traditional open surgery is thus primarily reserved for very difficult cases. The limitations of laparoscopic colorectal surgery are first and foremost related to its adequacy for oncological indications. In 2002, Lacy et al. [16] compared the treatment of colorectal cancer by using conventional and laparoscopic techniques. Today, 5-year follow-up results are available; however, the question still remains open [17]. The recently published study by Keller et al. [18], which analyzed a 1-year prospective national inpatient database of two patient groups who underwent colon surgery by means of conventional laparotomy versus laparoscopy, presented a good example of the realities associated with the usage of laparoscopic techniques. The analysis of 6,343 patients led to the conclusion that the laparoscopic approach was more cost-effective and had better outcomes than open surgery. The authors concluded that minimally invasive surgery is a standard that should be offered to all patients [18]. It has been shown that laparoscopy significantly improves postoperative recovery and patient satisfaction, shortens length of stay, and reduces complication and readmission rates, with similar results compared to open surgery for benign and malignant colorectal neoplasms [17, 19–23]. It has to be said that the data presented by Keller et al. [18] showed that about 50% of all patients in the USA were operated using the laparoscopic approach, whereas in England, this figure was only 20% in 2010. In Germany, there is a role for laparoscopic surgery in managing benign and malignant diseases of the colon and rectum [18, 24]. 29 years after the foundation of laparoscopic surgery, we still have questions regarding the boundaries for oncological application of these techniques. Some interesting results were published by the well-designed ACOSOG-Z6051 trial (35 surgical institutions) where the non-inferiority thesis of laparoscopy in comparison to open surgery was supported according to pathological outcomes. Nonetheless, it was concluded that in order to achieve better oncological clinical outcomes, more advanced neoplasms and cancer stages should be treated by means of open surgery [25]. Established laparoscopic oncological colon surgery has to be compared with its further developments such as SILS and RALS to recognize its advantages and restrictions.

Minimally Invasive Surgery for the Treatment of CRC

Advanced Clinically Approved Laparoscopic Techniques

Single-Incision Laparoscopic Surgery

The reduction of the number of access ports as opposed to conventional laparoscopy (CL) led to the development of single-port...
laparoscopic surgery. It was pioneered by Pelosi who first reported on SILS hysterectomy in 1992 [26]. The first colorectal operations which were carried out using this technique were the treatment of appendicitis [27] and sigmoid diverticulitis [4]. In today’s practice, those techniques continue to expand but still have limitations. By direct comparison to multi-port laparoscopy, the following disadvantages have to be pointed out: lack of triangulation; different, sometimes uncomfortable position for the surgeon; no ergonomic position for the assistant; restricted number of working instruments; restricted external working space; need for additional special equipment, which in turn extends operating time and prolongs the learning curve [28] (fig. 1). New operative instruments were necessary to improve this technique, e.g. long scope with 5-mm diameter, curved laparoscopic instruments, articulated instruments etc. The variety of equipment available on the market for single-port technique rapidly increased in 2012 [29, 30]. Today, both techniques, i.e. CL and SILS, are also successfully used in oncological colon surgery. It has to be noted that since its development, SILS showed only moderate growing dynamics. The complexity of oncological techniques resulted in minimally invasive operations being special and very difficult. There are only few higher evidence-based publications which directly compare the SILS and CL procedures, and some of them were pre-planned studies. In the SILVERMANI trial, Winter et al. [31] proposed a prospective, well-structured trial to observe the differences in SILS and CL procedures for hemicolectomy for colonic cancer. Overall, it seemed that the SILS technique could be used to perform right hemicolectomy with quite good comparable results from 300 patients expected by the end of 2016 [31]. In 2010, Ramos-Valadez et al. [32] had already published a study with positive conclusions for SILS for the right colon surgery. Unfortunately, his observation cohort had only 11 patients [32]. In 2011, Kim et al. [33] initiated a trial to prospectively compare CL with single-port colon resections. The primary outcome of this trial showed no difference between the groups, but the technical difficulties with SILS were pointed out [33]. Furthermore, an interesting prospective randomized trial was recently published by Wang et al. [34]; here, early morbidity was used as an end point. In this paper, technical difficulties such as limitations relating to the instrument movement, loss of triangulation, difficulties with rectal transection, and intracorporeal double-stapling of anastomoses were also pointed out. Additionally, the need to use an additional 12-mm trocar in the SILS technique was regarded as problematic [34]. In contrast, Marks et al. [35], in his retrospective study, presented slightly better results for SILS procedures in respect to operative time, incision, and blood loss. Lee et al. [36] published different results for the left hemicolectomy operative time, where SILS operations lasted longer in comparison with HALS and classical multi-port technique. The use of independent parameters like inflammatory response as well as immune response, as proposed by Wang et al. [34], could enable a completely new, independent angle for comparing the laparoscopic operation techniques. Some studies showed that the oncological safety of SILS has not been completely proven. Local recurrence rate or distant metastasis may still pose an issue. There are studies showing oncological safety with SILS; however, this has to be better evaluated through higher evidence-based studies with longer observation time, i.e. disease-free survival or 5-year survival [34, 37]. Nevertheless, the early results are promising for SILS. In contrast, Chew et al. [38] reported no difference between SILS and CL for right hemicolectomy procedures according to lymph node count in the resected specimen.

Rectal cancer is even more challenging, particularly technically, when compared to colon SILS procedures, especially when the distance between the umbilicus and the sacrum or spleen is larger or when the patients’ body mass index (BMI) is higher. These considerations have undoubtedly influenced the pre-selection processes [39]. Across other aspects, single-incision TME techniques need to counter the tension of the new instruments, which poses further limitations [40]. It is worth mentioning that single-port techniques were mostly used for segmental colon resections and achieved the lowest rates of complications compared to CL and RALS [6, 36, 41]. However, meta-analyses have pointed out that the patients’ BMI was very low in the SILS group when compared to the normal population [42]. Cianchi et al. [30] explained that the results after SILS surgery are strongly correlated with the level of surgical skills when approaching the technique (which needed to be high), pre-selection of patients with smaller tumors, lower BMI, and right-sided pathology. Nevertheless, SILS procedures are still not widely adopted in colorectal surgery due to the fact that they are associated with technical challenges, i.e. not an ergonomic position for the operator, higher procedural skills of the operator, and most certainly higher costs [43, 44].

Robotically Assisted Laparoscopic Surgery

It is not surprising that the history of medical robots overlaps with laparoscopy, although robots did appear a few years prior to laparoscopy, namely with the ‘Puma 560’ used for neurosurgical biopsy in 1985. Several years later, this led to the development of
the 'Probot' for transurethral resection of the prostate. Simultan-
eously, the 'Robodoc' was created by IBM’s Thomas J. Watson Re-
search Center for total hip arthroplasty. There were also some
NASA projects in the 1980s which focused on developing telesur-
gery and further accelerated the development of the robots used in
surgery. The situation was also strongly influenced by the US Army
projects with Mobile Advanced Surgical Hospitals (MASH) where
wounded soldiers could be loaded into a vehicle with robotic
equipment and be operated by a surgeon of MASH.

First commercial voice-controlled endoscopic cameras were de-
veloped by Computer Motion Inc. and were called AESOP (Auto-
mated Endoscopic System for Optimal Positioning); later, they were
followed by ZEUS (fig. 2). AESOP development led to the 'da Vinci'
system, which is the most popular RALS platform in the world
nowadays. Progress in using robotic surgery was influenced even
more by the extension and improvement of laparoscopic operative
techniques. Germany also contributed to the history of employing
robotic surgery after F.-W. Mohr had successfully carried out the
first robotically assisted heart bypass in Leipzig in 1998. In 2008, the
German Aerospace Center (DLR) presented the first robotic system
for minimally invasive surgery [45–59] (fig. 3). In 2011, there were
1,400 operating rooms equipped with 'da Vinci' systems in
the USA. The higher costs slowed down the development of this
technique in the Eurozone due to the limitations of the social insur-
ance systems, and Germany was not an exception to this rule, thus
resulting in only 52 working RALS systems in 2011 [50]. It is need-
less to say that colorectal surgery could also be performed via lapa-
roscopy with robotic assistance [6]. However, we will analyze the
scientific literature to form an independent view on this topic. It
could be said that because of the disproportional operational costs,
the fast development of RALS in the USA had a background of a
combination of both excellent marketing performance and patients’
needs for modern technology. The meta-analysis by Tewari et al.
[51] on 286,876 prostatectomies showed that oncological margins
were comparable yet suggested that the adverse events decreased
when using robotically assisted procedures. Furthermore, the lower
readmission, reoperation, and total perioperative complication
rates supported a lower morbidity with RALS. Although these stud-
ies were very good, it has to be noticed that duration of a robotic
procedure, preparation time for surgery, learning curve, and costs
were not analyzed [51]. Currently, we do not have large numbers of
RALS techniques used in colorectal surgery. A very interesting
comparison was published by Keller et al. [52], focusing on CL,
SILS, and RALS procedures in colorectal surgery. The study had
several restrictions, e.g. analysis of non-homogeneous groups, time
of publication, small patient cohorts etc. However, the technical
trends of the operations were suitable for evaluation. Firstly, in
comparison to first publications about 20 years ago, CL has im-
proved the outcomes, and secondly, because of technical restric-
tions, RALS was mainly used for rectal cancer [53]. The advantages
of RALS were: comfortable position for the surgeons, reduction of
physiological tremors, physiological position of hands, structure
view enlargement, almost unrestricted motion of instruments, su-
perior dexterity, permanent 3D view, etc. [54, 55]. Where limita-
tions of movement (e.g. narrow spaces) exist, the advantages of ro-
botically assisted surgery are obvious. Comparing traditional lapa-
roscopic instruments with the possibilities of robotic instruments,
i.e. rotation (up to 540°), flexion (180°) clearly emphasizes the limi-
tations of CL [56]. Having said that, the robotic systems also had
limitations which were associated with its usage in a wider operative
field, such as in cases of rectal surgery, involving its mobilization
with the need to mobilize the left colonic flexure during the same
procedure [54]. Such changes in operative quadrants when using
RALS are associated with re-docking of the system, trocar reposi-
tioning, or additional trocar placement. This consequently led to
the development of hybrid techniques, where a part of the opera-
tion is carried out by means of standard laparoscopy, with conse-
quent time prolongation or use of an additional surgeon for the ro-
botically assisted part of the procedure [55, 57]. In contrast, many
authors reported no difference in outcome between hybrid and soli-
tary RALS [58–60]. Keller et al. [61] analyzed the operative time of
robotically assisted procedures, which was longer in the same series.
Moreover, the complication and readmission rates were higher than in multi- or single-port surgery. It has to be critically pointed out that the preoperative robotic system preparation time was always significantly longer, thereby prolonging the use of the operating theater [62]. The same observation was reported by Patel et al. [63] upon comparing RALS, CL, and HALS, with similar short clinical results in all groups. The mortality rate was analyzed by Keller et al. [52]; no differences were found and the study concluded that CL, RALS, and SILS enable high-quality colorectal surgery [52]. To evaluate the conversion rate, which is an excellent laparoscopic quality characteristic, more than 60 different studies on RALS and CL were analyzed, showing average conversion rates to open surgery of 2.4 and 0.7%, respectively [62]. In oncological colon surgery, however, the prognosis and outcome for the use of robotically assisted procedures are yet to be evidence base evaluated. The very frequent usage of RALS in the pelvis could be the reason for the results presented by Baik et al. [64], where better prognosis and oncologic outcomes were concluded. There are also studies where the amount of blood loss after colon surgery by robotically assisted procedures seemed to decline [65, 66]. It is too early to talk about the disease-free survival rates but small published series showed similar outcomes to CL [67, 68]. It is certain that total mesorectal excision (TME) resection could create an interesting further chapter of robotically assisted approaches due to a small operative field and closely placed anatomical structures. The first publication on the use of robots in oncological cases was written by Pigazzi et al. [69] in 2006. The meta-analysis by Araujo et al. [56] presented 32 studies with 1,776 patients who underwent robotically assisted procedures on the rectum. Generally, the postoperative complication rate was comparable in most of the evaluated studies. Only in one well designed cohort by Baik et al. [70], the reduction of complications was significantly smaller for RALS [56]. The oncological assessments demonstrated similar results in achieving adequate circumferential resection margin, lymph node count, distal resection margin, etc. [58]. The ROLLAR (RObotic Versus LAparoscopic Resection for Rectal Cancer) trial presented at the international congress of the European Association for Endoscopic Surgery (EAES) in 2015 showed no better outcomes for robotic surgery [71]. However, it is already proven that robotic surgery is safe and comparable with conventional laparoscopic surgery. Nonetheless, if costs for RALS surgery were optimized and the technology was better taught and widely accepted, then robotic surgery would be able to decrease the percentage of laparoscopic operations and would have a fixed place in oncological colon surgery, especially in difficult cases with narrow, small operative fields and, naturally, in cases involving sophisticated surgical reconstructions.

Endoscopic Local Tumor Resections

By definition, the term NOTES in colorectal surgery involves endoscopic resections of local colorectal tumors. The technique has been used for several years and resulted in many different modifications. The first endoscopic method for local tumor management was transanal endoscopic microsurgery (TEM), which was developed by Buess in 1983 [72]. Since then it has gradually gained acceptance and replaced the standard transanal excision due to its benefits of quick learning curve and better augmentation of the excised area. In a meta-analysis, Clancy et al. [73] proved better oncological results when using TEM instead of standard excision. TEM is consequently an established approach, which offers a stable operating platform with magnified stereoscopic view, thus allowing precise full-thickness excision of the rectal wall as far as 15–20 cm from the anal verge. TEM for rectal cancer could remove the primary tumor but, unlike TME, is not able to remove the mesorectal lymph nodes. Thus, it is important to determine the presence of metastases in lymph nodes prior to surgery. The novel method that is currently being developed and which still needs to be proven as safe and efficient is transanal minimally invasive surgery (TAMIS) [74]. Its preliminary results are promising but require more research. With the development of new and more sophisticated equipment, endoscopic resections have been combined with other surgical techniques to create more applicable and safer methods. Transanal TME (taTME) is the combination of the three established rectal surgery techniques, i.e. TME [75], transanal transabdominal resection/intermesenteric resection [76], and TEM, inspired by the recent concept of NOTES and the TAMIS procedure [77, 78].

A taTME has the potential benefit of better visual control of hard-to-access anatomical areas which would be impossible to reach by means of standard laparoscopic approaches, especially in male patients with a high BMI and low rectal cancer, thus resulting in open surgery. Better magnification may lead to even easier nerve preservation and better identification of the resection plane [79]. A taTME is a new approach of performing minimally invasive rectal resection; it attracts a lot of attention in the literature but still requires a lot of research to determine its full usefulness and safety for future patients.

Conclusion

The topic of trauma reduction without much change to the organ-specific procedures and improvement of surgical access still occupies our minds. Hence, experienced minimally invasive surgeons currently use very sophisticated equipment to further improve the already good quality of surgical colon procedures and take them to yet another level. In the future, minimally invasive surgery will further reduce the organ-dependent approach and will represent only a part of interdisciplinary therapy. The development of tailored individualized oncological approaches and diagnostic techniques will most likely reduce the range of available surgical interventions. Further development of endoscopic surgical equipment will improve the safety and quality of minimally invasive videosurgery.

Disclosure Statement

The authors declare that they have no conflicts of interest in respect to this research.
References

1. Hatzinger M, Kwon ST, Langbein S, Kamp S, Häcker WK, Cho HM, You YK, Oh ST: Single-port transum-
inal surgery: flexible platform review. World J Gastro-

2. Pelosi MA, Pelosi MA 3rd: Laparoscopic supracervical

roscopic-assisted resection vs open resection of stage II
or III rectal cancer on pathologic outcomes: the ACO-
SOG Z6051 randomized clinical trial. JAMA 2015;314:
1346–1355.

of single-incision laparoscopic colonoscopy: a systematic

5. The ‘SILVERMAN1’ Trial Single Incision Laparo-
doscopic Surgery: Results of a 190-patient, 7-criterion
randomized controlled trial. Trials 2015;16:539.

6. Trastulli S, Farinella E, Cirocchi R, et al: Robotic resec-
tion vs open resection of stage II rectal cancer: study
protocol for a randomized controlled trial. Trials 2015;16:539.

7. Watanabe M, Hase O, Neudecker JJ, Müller JM: Short
term outcomes of a randomised, phase 3 trial. Lancet

8. National Institute for Health and Clinical Excellence
(NICE). NICE implementation uptake report: laparo-
scopic surgery for colorectal cancer. NICE Technology
Appraisal 105. 2010.

seva P: Have we learned from lessons of the past? A
systematic review of training for single incision laparo-

10. Limkakul A, Schoenhader M, Lilenthal K, Frankent-
feld A, Karcz WK, Kuesters S: Pre-bent instru-
mates used in single-port laparoscopic versus conventional laparoscopic surgery: comparative study
of performance in a dry lab. Surg Endosc 2012;26:

term benefits for laparoscopic colorectal resection.

follow-up of the Medical Research Council CLASICC
trial of conventional versus laparoscopically assisted
84.

13. Van der Pas MH, Haghlin E, Cuesta MA, et al: Laparo-
scopically assisted versus open colorectal surgery: a meta-

Statement: updated recommendations for improving
the quality of reports of parallel-group randomized
trials. JAMA 2010;303:2411–2421.

2010 explanation and elaboration: updated guidelines
for reporting parallel-group randomized trials. Ann

2010 statement: updated guidelines for reporting
parallel-group randomized trials. Ann Intern Med

2010 explanation and elaboration: updated recommen-
dations for improving the quality of reports of parallel-

2010 statement: updated guidelines for reporting parallel-

2010 explanation and elaboration: updated guidelines

versus multiorifice laparoscopic colorectal surgery:

versus multiorifice laparoscopic colorectal surgery: