Increased Cerebral Tff1 Expression in Two Murine Models of Neuroinflammation

Eva B. Znalesniak a, Ting Fu a, Karina Guttek b, Ulrike Händel c, Dirk Reinhold b, Werner Hoffmann a

a Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, b Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, c Institute of Medical Microbiology and Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany

Key Words
Inflammation • Inflammasome • TFF peptide • Trefoil factor • Toxoplasma gondii • Encephalitis • Experimental autoimmune encephalomyelitis • Multiple sclerosis

Abstract
Background/Aims: The trefoil factor family (TFF) peptide TFF1 is a typical secretory product of the gastric mucosa and a very low level of expression occurs in nearly all regions of the murine brain. TFF1 possesses a lectin activity and binding to a plethora of transmembrane glycoproteins could explain the diverse biological effects of TFF1 (e.g., anti-apoptotic effect). It was the aim to test whether TFF expression is changed during neuroinflammation. Methods: Expression profiling was performed using semi-quantitative RT-PCR analyses in two murine models of neuroinflammation, i.e. Toxoplasma gondii-induced encephalitis and experimental autoimmune encephalomyelitis (EAE), the latter being the most common animal model of multiple sclerosis. Tff1 expression was also localized using RNA in situ hybridization histochemistry. Results: We report for the first time on a significant transcriptional induction in cerebral Tff1 expression in both T. gondii-induced encephalitis and EAE. In contrast, Tff2 and Tff3 expression were not altered. Tff1 transcripts were predominantly localized in the internal granular layer of the cerebellum indicating neuronal expression. Furthermore, also glial cells are expected to express Tff1. Characterization of both experimental models by expression profiling (e.g., inflammasome sensors, inflammatory cytokines, microglial marker Iba1, ependymin related protein 1) revealed differences concerning the expression of the inflammasome sensor Nlrp1 and interleukin 17a. Conclusion: The up-regulated expression of Tff1 is probably the result of a complex inflammatory process as its expression is induced by tumor necrosis factor α as well as interleukins 1β and 17. However on the transcript level, Tff1 KO mice did not show any significant signs of an altered immune response after infection with T. gondii in comparison with the wild type animals.

Introduction
The peptide TFF1 (formerly pS2) is a member of the trefoil factor family (TFF) and a typical secretory product of the gastric mucosa (reviews: [1, 2]). Here, it is released from...
surface mucous cells together with the mucin MUC5AC [3, 4]. In the gastric antrum, TFF1 is capable of forming disulfide-linked heterodimers with gastrokine 2 [5, 6]. TFF1 is also secreted from human conjunctival goblet cells [7] as well as the human urinary tract [8]. Furthermore, a very low level of TFF1 expression is found in nearly all regions of the murine and rat brain [9-14].

Tff1-deficient (Tff1KO) mice show mainly a gastric phenotype, i.e., they all spontaneously develop antropyloric adenoma and about 30% progress to carcinoma [15, 16]. This tumor suppressor function of TFF1 is in line with the observation that TFF1 reduces mammary tumor development [17]. Generally loss of TFF1 is accompanied with an inflammatory phenotype [18] and treatment of Tff1KO mice with a COX-2 inhibitor suppressed tumor growth in the antrum [19]. TFF1 expression suppressed tumor necrosis factor (TNF)-α-mediated NF-κB activation [18] and also suppressed Helicobacter pylori-induced inflammation in gastric carcinogenesis [20]. Tff1KO mice also show dysregulated gastric self-renewal (expanded populations of surface mucous cells in the fundic [21] and antral units [22]).

TFF1 has been reported to lower cell proliferation by delaying G1-S cell phase transition and to have an anti-apoptotic effect [23]. Furthermore, TFF1 is a motogenic factor, which probably has a function during rapid repair of the gastric mucosa by cell migration (restitution) and also during gastric self-renewal [17, 24, 25]. The motogenic effect would establish TFF1 as a chemokine, which could promote the recruitment of, e.g., immune cells as well as cancer cell invasion. Thus far, neither the precise molecular function of TFF1 has been elucidated nor a specific receptor has been characterized. However, a pH-dependent lectin activity has been reported for TFF1 responsible to bind to a H. pylori lipopolysaccharide [26]. Thus, TFF1 seems to play a major role in colonization of the gastric mucus by H. pylori. Furthermore, its lectin activity could also explain the diverse biological effects of TFF1 by binding to a plethora of transmembrane glycoproteins, as suggested for TFF2 [27, 28].

Pathologically, TFF1 is expressed in some adenocarcinomas such as breast cancer [1] and in retinoblastoma cells [29]. Furthermore, ectopic TFF1 expression has been reported during chronic intestinal ulceration [30] and other chronic inflammatory diseases; for example, TFF1 expression is induced in human chronic pancreatitis tissue [31], in the colon of infants with inflammatory bowel disease [32], in a murine asthma model in trans-differentiating Clara cells [33, 34], in the porcine colonic epithelium after infection with Salmonella typhimurium [35], and in the murine spleen after oral Toxoplasma gondii infection (ileitis model) [36]. Here, we report for the first time on a significant transcriptional induction of cerebral Tff1 expression in two murine models of neuroinflammation, i.e., T. gondii-induced encephalitis and experimental autoimmune encephalomyelitis (EAE), the latter being the most common animal model of multiple sclerosis (MS).

Materials and Methods

Murine T. gondii-induced encephalitis model

Two male mice heterozygous for Tff1 [15] (obtained from Dr. M.-C. Rio and Dr. C. Tomasetto, IGBMC, Illkirch, France) were crossed with 129/SvJ mice in order to establish a stable line. Homozygous offspring (i.e., wild type and Tff1KO animals, respectively) were used for further experiments. Animal care and experimental procedures were performed according to legal regulations and T. gondii infection experiments were approved by the state authorities (Landesverwaltungsamt Sachsen-Anhalt, Halle, Germany). The animals were kept in standard cages under specific-pathogen free (spf) conditions at the animal facility of the Medical Faculty, maintained on laboratory food and tap water ad libitum in a regular 12 h dark/light cycle with a temperature of 22°C.

To obtain T. gondii cysts, NMRI mice (Harlan-Winkelmann, Borchen, Germany) were orally infected with 5 cysts of the type II DX-strain at the age of 2-3 months, and the cysts in the brain homogenates were counted 3-5 months after infection as described previously [37]. Experimental mice (male Tff1KO and corresponding wild type animals, respectively; age: 3-5 months) were intraperitoneally (i.p.) infected with a brain inoculum equivalent to 5 cysts per mouse. 4 weeks post-infection, the animals were anaesthetized
with isoflurane, transcardially perfused with 50 mL 0.9% NaCl and brain and stomach samples were collected. The left half of the brain was used for in situ hybridization histochemistry, whereas the right half was divided into cerebellum and remaining brain and used for RT-PCR analysis.

Murine EAE model

C57BL/6 mice were bred and housed in the animal facilities of the Medical Faculty. Animal care and experimental procedures were performed according to legal regulations and EAE induction experiments were approved by the state authorities (Landesverwaltungsamt Sachsen-Anhalt, Halle).

Induction of EAE was performed as described earlier [38]. Briefly, 5 male C57BL/6 mice (8 to 12 weeks old) were immunized subcutaneously in depots distributed over 4 spots across the flanks with 200 µg myelin oligodendrocyte glycoprotein peptide 35-55 (corresponding to mouse sequence MEVGWYRSPFSRVHLYGK) in 0.2 mL emulsion consisting of equal volumes of PBS and complete Freund’s adjuvant (Sigma, Taufkirchen, Germany), containing 4 mg/mL of Mycobacterium tuberculosis H37Ra (Difco, Detroit, MI). 200 ng Pertussis toxin (List Biological Laboratories, Campbell, CA) were administered i.p. at days 0 and 2.

Mice were scored daily for clinical signs of EAE according to the following increasing severity scale: 0: no disease; 1: tail weakness (tail plegia); 2: hindlimb paraparesis and/or weak righting-reflex; 3: hindlimb paraplegia; 4: paraplegia with forelimb weakness or paralysis; 5: moribund animals. Mice with intermediate clinical signs were scored in 0.5 increments. The mice were killed after 21 days (4 animals reached a score of 1.5 and one animal a score of 3).

DNA and RNA extraction, PCR analysis

For genotyping the Tff1 KO or corresponding wild type animals, genomic DNA was isolated from tail clippings as described [36]. The primer pairs used for PCR analysis are listed in Table 1 (Neo, Tff1).

Furthermore, isolation and purification of total RNA as well as RT-PCR analysis and semi-quantitative evaluation of relative expression levels of selected genes including statistical analysis have been described [Super Script II reverse transcriptase (Thermo Fisher Scientific, Invitrogen) was used for the T. gondii model, whereas RevertAid H Minus Reverse Transcriptase (Thermo Fisher Scientific, Fermentas Walldorf, Germany) was used for the EAE model] [36]. The cDNA was also checked for contaminating chromosomal DNA by amplification of a β-actin promoter sequence [36]. The specific primer pairs used here have been published (Actb, MB2166/MB2167; Iba1; Il1β; Il10; Il12α; Tff1; Tff3; Tnfα; [36]) or are listed in Table 1.

RNA in situ hybridization histochemistry

The brain halves were fixed in 10% neutral buffered formalin solution (Sigma Aldrich, Munich, Germany) at room temperature for 24 hours, washed with PBS followed by dehydration in an increasing series of ethanol (in nuclease free water; Ambion/Thermo Fisher Scientific, Dreieich, Germany) and finally in xylol, and embedded in paraffin.

Table 1. Oligonucleotides used

<table>
<thead>
<tr>
<th>Genes</th>
<th>Accession No.</th>
<th>Primer No.</th>
<th>Primer Pairs</th>
<th>Nucleotide Positions</th>
<th>Tm (°C)</th>
<th>Size (bp)</th>
<th>Intron Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>G44</td>
<td>NM_013488.2</td>
<td>MB2117</td>
<td>ACCCTTGCACACAGTGGCAAA</td>
<td>630-849</td>
<td>60°</td>
<td>472</td>
<td>yes</td>
</tr>
<tr>
<td>G46b</td>
<td>NM_001081.11.102</td>
<td>MB2119</td>
<td>CGGAGCTGCTGACATTCTCTCC</td>
<td>1101-1082</td>
<td>60°</td>
<td>587</td>
<td>yes</td>
</tr>
<tr>
<td>Gt17a</td>
<td>NM_001055.2</td>
<td>MB2120</td>
<td>AAACAGCTTCTTCATTCTCTTC</td>
<td>200-219</td>
<td>60°</td>
<td>667</td>
<td>yes</td>
</tr>
<tr>
<td>Etr1</td>
<td>NM_134055.4</td>
<td>MB2119</td>
<td>CGTCTGCCTCTGGCCAAG</td>
<td>5-73</td>
<td>60°</td>
<td>297</td>
<td>yes</td>
</tr>
<tr>
<td>Md3c</td>
<td>NM_001033.45.0</td>
<td>MB2120</td>
<td>AAACAGCTTCTTCATTCTCTTC</td>
<td>463-482</td>
<td>60°</td>
<td>339</td>
<td>yes</td>
</tr>
<tr>
<td>NpN1</td>
<td>NM_001004.12.2</td>
<td>MB2119</td>
<td>CTGGGAGCTGCTGACATTCTCT</td>
<td>1001-1022</td>
<td>60°</td>
<td>703</td>
<td>yes</td>
</tr>
<tr>
<td>NpN2</td>
<td>NM_14509.7</td>
<td>MB2181</td>
<td>GTCTCCCTCTGTTCTGGTCA</td>
<td>5-73</td>
<td>60°</td>
<td>297</td>
<td>yes</td>
</tr>
<tr>
<td>Np10</td>
<td>NM_001033.67.3</td>
<td>MB2181</td>
<td>GGAGCTGCTGACATTCTCTTC</td>
<td>463-482</td>
<td>60°</td>
<td>339</td>
<td>yes</td>
</tr>
<tr>
<td>Np11c</td>
<td>NM_001033.70.3</td>
<td>MB2181</td>
<td>GGAGCTGCTGACATTCTCTTC</td>
<td>463-482</td>
<td>60°</td>
<td>339</td>
<td>yes</td>
</tr>
<tr>
<td>TFF1</td>
<td>NM_0936.3</td>
<td>MB2181</td>
<td>GGAGCTGCTGACATTCTCTTC</td>
<td>463-482</td>
<td>60°</td>
<td>339</td>
<td>yes</td>
</tr>
<tr>
<td>TFF3</td>
<td>NM_0936.3</td>
<td>MB2181</td>
<td>GGAGCTGCTGACATTCTCTTC</td>
<td>463-482</td>
<td>60°</td>
<td>339</td>
<td>yes</td>
</tr>
<tr>
<td>Ubc1</td>
<td>NM_0936.3</td>
<td>MB2181</td>
<td>GGAGCTGCTGACATTCTCTTC</td>
<td>463-482</td>
<td>60°</td>
<td>339</td>
<td>yes</td>
</tr>
</tbody>
</table>

This half of the brain was used for in situ hybridization histochemistry, whereas the right half was divided into cerebellum and remaining brain and used for RT-PCR analysis.

Znalesniak et al.: Neuroinflammation Induces Cerebral Tff1 Expression
was used as a positive control, whereas the bacterial gene dihydrodipicolinate reductase (DapB; Cat.-No. 310043) was used as a negative control. The incubation and hybridization steps were performed in an HybridEZ™ Oven (Advanced Cell Diagnostics, Hayward, CA, USA). The sections were counterstained with Gill 1 hematoxylin (Richard Allan Scientific/Thermo Scientific, Dreieich, Germany).

Results

Expression profiling in mouse brain after i.p. T. gondii infection (encephalitis model)

Cerebral Tff expression was compared between T. gondii-infected and non-infected animals using RT-PCR analyses and semi-quantitative evaluation (Fig. 1). As a control, the stomach of these animals was investigated. Tff1 expression was significantly induced in the cerebellum and also the remaining brain after T. gondii infection. In contrast, Tff2 and Tff3 expression did not change.

![Fig. 1. RT-PCR analyses. (A) Tff1, Tff2, Tff3, and β-actin (Actb) expression in the cerebellum, remaining brain, and stomach of non-infected control mice and i.p. T. gondii-infected mice (5 wild type/WT and 5 Tff1 KO mice each, respectively). The number of amplification cycles is given in parentheses. (B) Semi-quantitative evaluation (standardized against β-actin; significancies are indicated by asterisks).](image)

![Fig. 2. RT-PCR analyses. (A) Nlrp3, Nlrc4, Nlrc5, Mnda, Iba1, Tnfα, Il1β, Il10, Il12a, Cd4, Cd8a, Epdr1, and β-actin (Actb) expression in the cerebellum of non-infected control mice and i.p. T. gondii-infected mice (5 wild type/WT and 5 Tff1 KO mice each, respectively). The number of amplification cycles is given in parentheses. (B) Semi-quantitative evaluation (standardized against β-actin; significancies are indicated by asterisks).](image)
Furthermore, the expression of typical inflammatory marker genes was analyzed in the cerebellum of wild type and Tff1KO mice (Fig. 2). The transcripts analyzed encode the inflammasome constituents Nlrp1a (data not shown), Nlrp3, Nlrp6 (data not shown), Nlrc4, Nlrc5, and Mnda, the ionized calcium binding adapter protein 1 (Iba1), the cytokine Tnfα, the interleukins Il1β, Il10, Il12a, and Il17a (data not shown) as well as the differentiation antigens Cd4 and Cd8a. Additionally, the expression of ependymin related protein 1 (Epdr1) was evaluated, because it is down-regulated in a murine asthma model [33]. With exception of Epdr1, all genes outlined in Fig. 2 showed a significant increased expression after T. gondii infection. However, there was no significant difference in the expression levels between wild type and Tff1KO mice. Nlrp1a was not detected, Nlrp6 did not change significantly, and Il17a was barely detected after T. gondii infection.

Tff1 in situ hybridization of cerebellum after i.p. T. gondii infection (encephalitis model)

In situ hybridization was performed in order to localize the T. gondii-induced Tff1 expression in the cerebellum on a cellular level (Fig. 3). Tff1 transcripts were predominantly localized in the internal granular layer of T.gondii-infected animals (Fig. 3B); in contrast, the molecular layer and the fiber tracts showed a much weaker Tff1 expression (Fig. 3B). Tff1 expression was not detectable in non-infected control animals (Fig. 3A).
Expression profiling in mouse brain and spinal cord after EAE induction

RT-PCR analysis and semi-quantitative evaluation of Tff1 expression levels revealed a significant increase in the cerebellum, the remaining brain and the spinal cord of EAE animals when compared with the controls (Fig. 4). Furthermore, the expression of typical inflammatory marker genes (similar as in Fig. 2) was significantly increased in the cerebellum as well as the spinal cord of EAE animals (Fig. 5). Only Epdr1 expression did not change.

Discussion

Cerebral Tff1 expression is induced in two models of neuroinflammation

Here, we show for the first time that Tff1 expression is significantly induced in the murine brain during neuroinflammatory processes. In sharp contrast, Tff2 and Tff3 are not up-regulated. The increase in Tff1 expression is demonstrated in models of T. gondii-induced encephalitis as well as EAE.

In the T. gondii model, induced cerebellar Tff1 expression is localized predominantly to the internal granular layer (Fig. 3B) which is a strong indication that Tff1 is transcribed in neurons. This would be in line with reports on neuronal Tff1 expression in the mouse [14] and rat [13]. A neuronal Tff1 expression is also reminiscent to that of Tff3 in the rat cerebellum [39]. Furthermore, to lower extent, induced widespread cerebellar Tff1 expression is also detectable in the molecular layer and the fiber tracts (Fig. 3B). This points towards a Tff1 expression in astrocytes and activated microglial cells, the latter representing the primary immune cells of the CNS [40], which are known for their up-regulated synthesis of ionized calcium binding adapter protein 1 (Iba1) [41]. Indeed, Iba1 is one of the strongest up-regulated genes after T. gondii infection (Fig. 2). Of note, also Tff3 is expressed in activated microglial cells [39]. Tff1 expression by astrocytes would be in line with previous reports [9, 42].

The up-regulated Tff1 expression after T. gondii infection is probably the result of a complex inflammatory process. A primary response of the CNS is the formation of inflammasomes (e.g., in microglia, but also in neurons and astrocytes), the activation of caspase-1, and the release of IL1β and IL18 (reviews: [43, 44]). Then, IL1β and IL18 signal through their respective receptors (present on microglia, astrocytes and neurons)
and trigger NF-κB-dependent complex transcriptional events [44]. Major components of inflammasomes are certain intracellular pattern recognition receptors (PRRs), which function as inflammasome sensors. In agreement with this model, the PRRs Nlrp3, Nlrc4, Nlrc5, and Mnda are significantly up-regulated after *T. gondii* infection (Fig. 2). In contrast, Nlpr6 is not up-regulated (data not shown). Of note, the PRRs Nlrp1a, Nlrp1b, and Nlrp1c are not detectable in Tff1^-KO^ mice and the corresponding wild type animals (data not shown). The induction of a complex set of pro- and anti-inflammatory cytokines such as Tnfa, IL1β, IL10, and IL12a is a clear sign for the ongoing severe inflammatory process after *T. gondii* infection. Induction of Iba1 is a clear sign for the activation of microglial cells [41]. Increased expression of the anti-inflammatory cytokine IL10 is due to stimulation of astrocytes, whereas Cd4 and Cd8a expression probably result from infiltrating T cells. Induction of cerebral Tff1 expression in the *T. gondii*-infected mice could well be a consequence of Tnfa and IL1β secretion because these two cytokines are capable of inducing transcriptional Tff1 expression via NF-κB [45]. A similar up-regulated expression of Tff1 has also been reported in cultured mouse astrocytes after induction with TNFα, but also IL6 and IL7 [42]. The up-regulation of Tff1 could also result from a FoxA (formerly: hepatocyte nuclear factor 3) binding site (motif IV), which is conserved in human and mouse near the TATA box [46-48]. The expression of FoxA is known to be up-regulated particularly by inflammatory cytokines [49]. Of note, FoxA1 and FoxA2 bind predominantly to the site in TFF1 and to lesser extent to sites in TFF2 and TFF3 [46].

A slightly different picture emerges in the EAE model. Here, the PRRs Nlrp3, Nlrc4, Nlrc5, and Mnda are significantly up-regulated again in EAE animals (Fig. 5). However, and in contrast to the *T. gondii* model, also Nlrp1a is significantly up-regulated in the EAE model. The reason is probably the variation in Nlrp1 in the different mouse strains [44] used for the two models (129/SvJ versus C57BL/6). Nlrp1a and Nlrp1c expression is lacking in certain 129S1 mouse strains (when compared with C57BL/6) and allelic variants in Nlrp1b control susceptibility to anthrax lethal toxin [50]. Of special interest, at least in the rat Nlrp1 controls not only susceptibility to the anthrax lethal toxin, but also to *T. gondii* [51]. Furthermore, several inflammatory cytokines such as Tnfa, IL1β, IL10, and IL12a are induced in EAE animals similar to *T. gondii*-infected animals. Again, Iba1 is one of the strongest up-regulated genes indicative of activated microglial cells [41]. Of special note, a characteristic difference to the *T. gondii*-induced encephalitis model is observed because only the EAE animals show significant expression of the pro-inflammatory cytokine IL17a (Fig. 5). This result is in line with the observation that the occurrence of Th17 cells and expression of IL17 is a characteristic feature of inflammation in MS [52]. As a consequence, also IL17 might trigger transcriptional activation of the TFF1 gene via the transcription factors NF-κB, ATF2, and AML1 [53].

In both neuroinflammatory models cerebral Epdr1 expression is not significantly changed when compared with the controls (Figs. 2, 5). In contrast, in the murine lung Epdr1 is down-regulated during *Aspergillus fumigatus*-induced inflammation [33]. Epdr1 (previously termed Merp2) probably encodes a lysosomal protein homologous to human UCC1/1/MERP1 [54]. MERPs/EPDRs share similarity to piscine ependymins, which represent meningeal secretory proteins involved in neuroplasticity and neuronal regeneration (review: [55]).

In conclusion, both neuroinflammatory models share similarities concerning the expression of certain inflammasome sensors (induction of Nlrp3, Nlrc4, Nlrc5, Mnda), several cytokines and particularly induction of Tff1. A major difference is the specific expression of IL17 in the EAE animals only. In the two neuroinflammatory models, Tff1 (and not Tff2 and Tff3) expression is specifically induced probably due to up-regulation of Tnfa, IL1β, and (in the EAE model) IL17a. This specific induction of Tff1 expression is in line with other inflammatory models [33, 35, 36] and might be regulated at least partially by FoxA. The function of TFF1 in the murine brain is not known thus far and a protective effect is within the limits of expectation. For example, the anti-apoptotic effect of TFF1 [23] might reduce inflammation-induced neurodegeneration [52]. Cerebral TFF1 expression could also suppress TNFα-mediated NF-κB activation and could act as an anti-inflammatory...
agent in the brain [20]. However, Tff1^{−/−} mice did not show any obvious signs of an altered inflammatory response after infection with <i>T. gondii</i> in comparison with wild type animals (Fig. 2). For the future, it would be interesting to investigate whether TFF1 is induced also in human neuroinflammatory diseases such as MS.

Acknowledgements

The authors thank Dr. M.-C. Rio and Dr. C. Tomasetto (both IGBMC, Illkirch, France) for providing the mice heterozygous for Tff1, Prof. D. Schlüter for continued support, D. Lorenz for her help with the illustrations, and Dr. J. Lindquist for critically reading the manuscript.

Disclosure Statement

The authors declare no conflict of interest.

References

5. Westley BR, Griffin SM, May FE: Interaction between TFF1, a gastric tumor suppressor trefoil protein, and TFIZ1, a brichos domain-containing protein with homology to SP-C. Biochemistry 2005;44:7967-7975.
27 Hoffmann W: TFF2, a MUC6-binding lectin stabilizing the gastric mucus barrier and more. Int J Oncol 2015;47:806-816.

50 Boyd ED, Dietrich WF: Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Gen 2006;38:240-244.

