Microarray Analysis Reveals Increased Expression of Matrix Metalloproteases and Cytokines of Interleukin-20 Subfamily in the Kidneys of Neonate Rats Underwent Unilateral Ureteral Obstruction: A Potential Role of IL-24 in the Regulation of Inflammation and Tissue Remodeling

Domonkos Pap, Erna Sziksz, Zoltán Kiss, Réka Rokonay, Apor Veres-Székely, Rita Lippai, István Márton Takács, Éva Kis, Andrea Fekete, György Reusz, Attila J. Szabó, Ádám Vannay

Key Words
Newborn • Congenital obstructive nephropathy • Unilateral ureteral obstruction • CKD • Microarray • MMP-12, IL-24

Abstract
Background/Aims: Congenital obstructive nephropathy (CON) is the main cause of pediatric chronic kidney diseases leading to renal fibrosis. High morbidity and limited treatment opportunities of CON urge the better understanding of the underlying molecular mechanisms. Methods: To identify the differentially expressed genes, microarray analysis was performed on the kidney samples of neonatal rats underwent unilateral ureteral obstruction (UUO). Microarray results were then validated by real-time RT-PCR and bioinformatics analysis was carried out to identify the relevant genes, functional groups and pathways involved in the pathomechanism of CON. Renal expression of matrix metalloproteinase (MMP)-12 and interleukin (IL)-24 were evaluated by real-time RT-PCR, flow cytometry and immunohistochemical analysis. Effect of the main profibrotic factors on the expression of MMP-12 and IL-24 was investigated on HK-2 and HEK-293 cell lines. Finally, the effect of IL-24 treatment on the expression of pro-inflammatory cytokines and MMPs were tested in vitro. Results: Microarray analysis revealed...
880 transcripts showing >2.0-fold change following UUO, enriched mainly in immune response related processes. The most up-regulated genes were MMPs and members of IL-20 cytokine subfamily, including MMP-3, MMP-7, MMP-12, IL-19 and IL-24. We found that while TGF-β treatment inhibits the expression of MMP-12 and IL-24, H₂O₂ or PDGF-B treatment induce the epithelial expression of MMP-12. We demonstrated that IL-24 treatment decreases the expression of IL-6 and MMP-3 in the renal epithelial cells. Conclusions: This study provides an extensive view of UUO induced changes in the gene expression profile of the developing kidney and describes novel molecules, which may play significant role in the pathomechanism of CON.

Introduction

The most common cause of chronic kidney disease (CKD) in infants and children is congenital obstructive nephropathy (CON) characterized by renal tubular dilatation and parenchymal damage [1]. The severe form of CON is a progressive disease leading to markedly decreased renal function and finally to renal replacement therapy or transplantation. Although CON is a common disorder, its pathophysiology remains poorly understood and the underlying molecular mechanisms need to be elucidated.

Previous microarray studies performed on the kidney newborn rats revealed that ureteral obstruction activated the renin-angiotensin system (RAS), induced renal infiltration of neutrophils and macrophages and promoted the expression of immune modulator and structure genes [2, 3]. These processes lead to overproduction of reactive oxygen species [4, 5] and enhanced production of pro-inflammatory and profibrotic cytokines and growth factors, including interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, transforming growth factor (TGF) -β or platelet derived growth factor (PDGF)-B [6-9]. These factors implicated in the progression of chronic inflammation and in the increased production of collagen-rich extracellular matrix (ECM) leading to fibrosis and CKD [10].

Although similar processes are observed in adult rats, there are certain distinctions. While inhibition of endogenous RAS is the primary intervention point in adults to slow down the progression of CKD, RAS inhibitors aggravate renal injury in the developing kidney of neonates [11, 12]. Similarly, although inhibition of TGF-β signaling pathway has beneficial effects in adult mice, it exacerbates renal injury in neonatal ones [13].

In the present study microarray analysis was performed to identify novel genes and molecular pathways involved in the pathomechanism of neonatal UUO-induced renal damage. Bioinformatics analysis was carried out to assess the main functional groups and pathways altered by differentially expressed genes derived from the microarray experiments. Based on the microarray results, we investigated the factors responsible for the expression of MMP-12 and IL-24 and also the biological role of IL-24 in the pathomechanism of CON. Our findings may contribute to the deeper understanding of molecular mechanisms of CON facilitating the identification of potential new therapeutic targets.

Materials and Methods

Animal model

The institutional committee on animal welfare approved all experiments (PEI/001/83-4/2013). Wistar rats (Charles River Laboratories, Sulzfeld, Germany) were housed in a temperature-controlled (22 ± 1 °C) room with 12-hour light and dark cycles cycles and mothers of the pups had free access to a standard rat chow and water. Newborn rats were randomly divided into two groups (N=6/group). Under general anaesthesia induced by inhalation of isoflurane mixed with air using a vaporizer (Eickemeyer Veterinary Equipment Ltd., Twickenham, UK) standard midline laparotomy was performed, and the bowel was gently
displaced from the abdomen. Then the left ureter was isolated by blunt dissection and completely ligated using fine suture material (UUO group). The bowel was then laid back and the muscle and skin were closed with nylon sutures. Sham-operated control animals underwent identical surgical procedure without occlusion of the left ureter (control group). Ten days after the initiation of UUO left kidneys were surgically removed. Kidney segments were fixed in 4% buffered formaldehyde immediately or snap-frozen in liquid nitrogen for the further molecular biological measurements.

Histological analysis

Paraffin sections of kidneys fixed in paraformaldehyde (4%, pH 7.4) were stained with Periodic acid-Schiff (PAS) reagents counterstained with haematoxylin eosin. Furthermore, Masson’s trichrome staining was performed to evaluate the collagen deposition in the kidneys as one of main histological hallmarks of interstitial fibrosis. Images were taken with a Zeiss AxiosImager A1 Light Microscope (Carl Zeiss GmbH, Jena, Germany) under 200x magnification from each kidney cross-sections with Pannoramic Viewer.

In vitro experiments

Human embryonic kidney (HEK-293) and human proximal tubular epithelial (HK-2) cell lines (American Type Culture Collection, Manassas, VA, USA) were cultured in Dulbecco’s modified Eagle’s medium (Gibco, Life Technologies, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco, Life Technologies, Carlsbad, CA, USA) and 1% Penicillin-Streptomycin Solution (Sigma-Aldrich Co., St. Louis, MO, USA) in humidified 95% air and 5% CO₂ at 37°C. Cells with 70–80% confluency and between 6 and 10 passages were used for the *in vitro* experiments. HEK-293 and HK-2 cells were plated into 6-well tissue culture dishes (5x10⁵ cells/well) (Sarstedt, Nümbrecht, Germany) than incubated in serum-free medium for 24 hours. Cells were treated either with 1nM recombinant human (rh) rhTGF-β or 0.4 nM rhPDGF-B or 2 nM rhIL-24 (R&D Systems, Minneapolis, MN, USA) or 25 μM H₂O₂ for 24 hours (N=6 well/treatment group). Control cells were treated with vehicle only. Then cells were trypsinised, centrifuged and pellets were collected for RT-PCR measurements.

RNA isolation and quality determination

Total RNA was isolated from frozen kidney samples and also from the HEK-293 and HK-2 cells by RNeasy RNA isolation kit according to the instructions of the manufacturer (Qiagen GmbH, Hilden, Germany). The quality and quantity of total RNA were determined with an Agilent 2100 Bioanalyser (Agilent Technologies, Palo Alto, CA, USA) then run on a 1% agarose gel. The same RNA samples over integrity score of 8.0 with a clear gel image without DNA contamination were used for the microarray and for the real-time RT-PCR measurements.

Microarray measurement

One-one µg RNA isolated from the kidney samples of newborn rats in the UUO (n=4) and control (n=3) groups was reverse transcribed by Low-input RNA Linear Amplification Kit (Agilent Technologies, Palo Alto, CA, USA) and then transcribed to Cy3-labeled complimentary RNA according to the manufacturer as described before [14]. After purification, the dye content (>9.0 pmol dye/µg cRNA) and concentration of cRNA was measured by NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). 825 ng of Cy3-labeled cRNA were mixed and hybridized to Whole Rat Genome Oligo 4x44k microarrays overnight. Then the slides were washed and treated with Stabilizing and Drying Solution and scanned by an Agilent Microarray Scanner (Agilent Technologies, Palo Alto, CA, USA). After normalization by the Feature Extraction software version 7.5 with default parameter settings for one-colour oligonucleotide microarrays, data were transferred to GeneSpring 9.02 program (Agilent Technologies, Palo Alto, CA) for further statistical evaluation. In GeneSpring the normalization and data transformation steps recommended by Agilent Technologies for one-colour data were applied. Genes with more than 2.0-fold differential expression were further analysed by statistical tests.

Real-time reverse transcription polymerase chain reaction (RT-PCR)

One µg RNA was reverse-transcribed using SuperScript III reverse transcriptase (Life Technologies, Carlsbad, CA, USA) to generate first-strand cDNA. The real-time RT-PCRs were performed in a final vol-
Gene ontology (GO) term analysis

As the first stage of bioinformatics analysis we assessed the main functional groups of the differentially expressed genes derived from the microarray experiments. Therefore we performed GO term analysis in all domains of ontology on the dysregulated genes using the Database for Annotation, Visualization and Integrated Discovery (DAVID, https://david.ncifcrf.gov) [15, 16]. GO terms for the species Rattus norvegicus were included in the analysis. We used Fisher’s exact test to conduct an enrichment analysis with 0.05 threshold for the p-values of enriched categories adjusted with the Benjamini-Hochberg correction method. To reduce the biologically insignificant hits we tested 10 size-matched random draws from the Rattus norvegicus genome. Cytoscape software (http://www.cytoscape.org) was used to visualize the results on a network graph.

Reactome pathway analysis

Transcript ID-s of differentially expressed mRNAs were mapped to UniProt protein ID-s in order to form a potential pool of altered proteins. The resulting list was transferred to the Reactome Pathway Database (http://www.reactome.org) [17]. In Reactome, protein homology data were obtained from Ensmbl Compara database, which created a homology-based inference in the human proteome [18]. This method allowed to find interactions and pathways which are similar in species Rattus norvegicus and Homo sapiens. On the resulting pathway overrepresentation analysis a Fisher’s exact test adjusted with the Benjamini-Hochberg correction method was carried out. All related pathway mappings were then extracted and mapped on pathways after a FDR cutoff of 0.05. The resulting pathway involvement network was visualized in the Cytoscape software (http://www.cytoscape.org) [19].
Flow cytometry

After 10 days of UUO, kidneys were harvested, and the tissue was homogenized by collagenase II (Sigma-Aldrich, St. Louis, MO) to generate single cell suspension. Cell pellets were incubated with Fixation/Permeabilization solution (BD Bioscience Co., California, USA) for 10 min at RT. After permeabilization, cells were washed with Perm/Wash™ Buffer (BD Bioscience Co., California, USA) and incubated with IL-24 specific (rabbit monoclonal IgG, Abcam, Cambridge, UK) and MMP-12 specific (goat polyclonal IgG, Santa Cruz Biotechnology Inc., Dallas, TX) antibody diluted to 1:50 for 30 min at RT. Cells were subsequently washed with Perm/Wash™ Buffer and incubated with secondary antibodies (Alexa Fluor 488 chicken anti-rabbit IgG, and Alexa Fluor 647 donkey anti-goat IgG (Invitrogen, Life Technologies, Carlsbad, CA, USA)) diluted to 1:50 for 30 min, at RT, in the dark. Appropriate controls were performed omitting the primary antibodies to assure their specificity and to avoid autofluorescence. Thereafter cells were washed with Perm/Wash™ Buffer, and resuspended in PBS. The flow cytometric analysis was carried out using a FACSARia cytometer (BectonDickinson, San Jose, CA, USA). According to the forward and side scatter, we identified an intact cell gate (without debris). Ten thousand cells were collected and results were analysed using the BD FACSDiva Software (BectonDickinson, San Jose, CA, USA).

Immunohistochemical analysis

Immunohistochemistry was performed on paraffin-embedded 5 μm thick tissue sections fixed in formalin (4%, pH 7.4). Slides were deparaffinized in xylene, rehydrated in graded ethanol series, and washed in distilled water. Heat induced epitope retrieval was performed by boiling the tissue sections in citrate buffer (HISTOLS® -Citrate Buffer, pH 6.0; Histopathology, Ltd.) in a microwave oven at 750 W for 15 minutes, followed by cooling at room temperature for 20 minutes. Slides were washed in TBS. Nonspecific sites were blocked (HISTOLS® Background Blocking Protein Solution, cat#30013, Histopathology, Ltd.) for 10 minutes at room temperature. Without washing, the following primary antibodies were applied: anti-MMP-12 (rabbit monoclonal IgG, Abcam, Cambridge, UK) in 1:100 dilution and anti-IL-24 (rabbit monoclonal IgG, Abcam, Cambridge, UK) in 1:50 dilution. Incubation with the primary antibodies was performed for 1 hour at room temperature followed by repeated washing in TBS. Secondary antibody (HISTOLS® -R anti-rabbit Detection Systems (cat# 30011R, Histopathology, Ltd.) was applied for 30 minutes at room temperature followed by repeated washing in TBS. Sections were incubated with 3,3’-Diaminobenzidine (HISTOLS® -DAB chromogen/Substrate System, cat#30014.K, Histopathology, Ltd.), washed in distilled water, counter stained with haematoxylin followed by washing in tap water. For the negative control antibody diluent without primary antibody was used before the application of the secondary antibody. Sections were then dehydrated, cleared in xylene and mounted with permanent mounting medium.

Fluorescent immunohistochemistry

IL-24 has two heterodimer cell surface receptors (IL-20Ra/IL-20Rβ and the IL-22Ra/IL-20Rβ) both containing the inducible IL-20Rβ subunit. Here we investigated the presence of IL-20Rβ on the HEK-293 and HK2 cells cultured in tissue culture chambers (Sarstedt Kft., Budapest, Hungary). After repeated washing, the cells were fixed in 4% paraformaldehyde, washed again, and permeabilized with Triton X-100 (Sigma-Aldrich). Cells were incubated with anti-IL-20Rβ (rabbit monoclonal IgG, Abcam, Cambridge, UK). After repeated washing, the chambers were incubated with anti-rabbit Alexa Fluor 568 conjugate secondary antibody and counterstained with Hoechst 33342. Appropriate controls were performed by omitting the primary antibody to assure the specificity and avoid autofluorescence. Sections were analysed with a Zeiss LSM 510 Meta Confocal Laser-Scanning Microscope (Carl Zeiss GmbH) with objectives of magnification x400.

Statistical analysis

The statistical evaluation of real-time RT-PCR and flow cytometric results were performed by GraphPad Prism 6.01 software (GraphPad Software Inc., La Jolla, CA, USA). After testing normality with Kolmogorov-Smirnov test Mann-Whitney U-test or unpaired, two-tailed t-test was used to determine the differences between two groups. p≤0.05 was considered as statistically significant. Values were expressed as mean±SD.
Results

UUO-induced histological changes in the kidney

PAS and Masson’s trichrome staining of control kidneys revealed normal kidney structure, without glomerular, tubular or interstitial lesions. On the contrary, severe pathological changes in the tubulointerstitium characterized by parenchymal damage, tubular atrophy and dilatation with widened interstitial spaces were observed in kidneys underwent UUO. Masson’s trichrome staining revealed unequivocal signs of increased collagen deposition in the kidney of newborn rats underwent UUO compared to that of sham-operated controls (Figure 2).

Microarray results

Microarray analysis of the RNA samples isolated from the kidneys of newborn rats using a whole rat genome microarray kit revealed a marked change in the gene expression profile after 10 days of UUO compared to sham-operated controls (ArrayExpress: E-MTAB-4984). Eight hundred and eighty transcripts showed >2.0 fold, statistically significant alterations following UUO. Among them 681 transcripts were significantly upregulated and 199 transcripts were markedly downregulated as a consequence of UUO-induced renal injury (Figure 1 and Supplemental Table 1).

All supplementary materials are linked to the online version of the paper at http://www.gyermekklinika.semmelweis.hu/info.aspx?sp=123.

The significantly altered transcripts were then sorted into a list based on their gene expression fold change values. The first 10 genes with the highest and lowest fold change are shown in Table 2.

Results of GO term analysis

The initial DAVID-based GO term analysis of the differentially expressed genes following UUO resulted in 81 GO terms in the biological function (Supplemental Figure 1 and Supplemental Table 2), 13 GO terms in the molecular function (Supplemental Table 3) and
20 GO terms in the cellular localization (Supplemental Table 4) domain. The 10 most abundant categories of the domains are summarized in Table 3.

Results of Reactome pathway analysis

Enrichment analysis using Reactome Pathway Database identified 86 over-represented pathways summarized in Supplemental Table 5. Based on the number of entities the 10 major pathways were as follows: Innate Immune System, Cytokine Signaling in Immune system, Adaptive Immune System, GPCR ligand binding, Class A/1 Rhodopsin-like receptors, Signaling by Interleukins, Peptide ligand-binding receptors, G alpha (i) signaling events, Platelet activation, signaling and aggregation, Toll-Like Receptors Cascades (Table 4 and Supplemental figure 2).

Renal expression of MMP-3, MMP-7, MMP-12, IL-1β, IL-19, IL-24, renin and clusterin

To validate our microarray measurements real-time RT-PCRs were performed. Based on the microarray results eight genes were selected for validation. mRNA expression of

<table>
<thead>
<tr>
<th>Gene</th>
<th>Gene Name</th>
<th>Control MI</th>
<th>UUO MI</th>
<th>FC</th>
<th>p</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mmp7</td>
<td>matrix metalloproteinase 7</td>
<td>-9.256</td>
<td>0.518</td>
<td>187.5</td>
<td>< 0.01</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Mmp3</td>
<td>matrix metalloproteinase 3</td>
<td>-6.299</td>
<td>1.637</td>
<td>444.8</td>
<td>< 0.01</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Tph</td>
<td>thyrotropin releasing hormone</td>
<td>-5.876</td>
<td>0.948</td>
<td>633.3</td>
<td>< 0.01</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Aec1</td>
<td>amiloride binding protein 1</td>
<td>-6.318</td>
<td>0.399</td>
<td>159.2</td>
<td>< 0.01</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Ii19</td>
<td>interleukin 19 (predicted)</td>
<td>-5.657</td>
<td>0.972</td>
<td>98.9</td>
<td>< 0.01</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Mmp12</td>
<td>matrix metalloproteinase 12</td>
<td>-5.132</td>
<td>1.421</td>
<td>93.9</td>
<td>< 0.01</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Dnbt1</td>
<td>deleted in malignant brain tumours 1</td>
<td>-6.272</td>
<td>0.234</td>
<td>90.9</td>
<td>< 0.01</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Il24</td>
<td>interleukin 24</td>
<td>-6.039</td>
<td>0.455</td>
<td>90.1</td>
<td>< 0.01</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Dio3</td>
<td>deiodinase, iodothyronine, type III</td>
<td>-5.912</td>
<td>0.560</td>
<td>88.7</td>
<td>< 0.01</td>
<td>< 0.05</td>
</tr>
<tr>
<td>C4bp</td>
<td>complement component 4 binding protein, alpha</td>
<td>-4.622</td>
<td>1.241</td>
<td>58.2</td>
<td>< 0.01</td>
<td>< 0.05</td>
</tr>
</tbody>
</table>

Fig. 2. Representative pictures of PAS (A, B) and Masson's trichrome (C, D) stained kidney sections of sham-operated control (A, C) and unilateral ureteral obstructed (UUO) newborn rats (B, D). Tubular atrophy (asterisk), dilatation (arrowhead) with widened interstitial spaces (B) and significant interstitial collagen deposition were present in the obstructed kidney samples (D; arrow). Original magnification, ×200. Scale bar, 50 μm.
MMP-3 (p<0.01 vs. Control), MMP-7 (p<0.01 vs. Control), MMP-12 (p<0.05 vs. Control), IL-19 (p<0.01 vs. Control) and IL-24 (p<0.01 vs. Control) was studied as these genes showed the highest fold-change in our model (as shown in Table 1). Moreover, IL-1β (p<0.05 vs. Control), renin (p<0.05 vs. Control) and clusterin (p<0.05 vs. Control) were selected for further validation as literally well-known regulators of UUO induced renal fibrosis [3]. In accordance with the results of our microarray analysis, we found significantly elevated mRNA expression of each genes selected for validation in the kidney of newborn rats after 10 days of UUO compared to sham-operated controls (Figure 3).

Renal level of MMP-12 and IL-24

To validate our microarray gene expression data at protein level flow cytometric measurements were performed. In accordance with the microarray and real-time RT-PCR results, higher protein level of MMP-12 and IL-24 were found in the kidneys of newborn rats.
10 days after the onset of UUO compared to sham-operated control kidneys (p<0.01, respectively) (Figure 4).

Renal localization of MMP-12 and IL-24

MMP-12 immunopositivity was diffusely present in the cytoplasm of the tubular epithelial and glomerular cells of control and ureteral obstructed kidneys of the newborn rats in the renal cortex and medulla as well. All tubular segments were involved in the intraepithelial distribution of MMP-12. However, MMP-12 immunopositivity was more pronounced in the kidneys of newborn rats underwent UUO compared to controls (Figure 5/ A and B). In case of IL-24 staining renal tubular epithelial and glomerular cells showed immunopositivity in the renal cortex of newborn rats underwent UUO. In the kidneys of the control newborn rats IL-24 immunopositivity was not detectable (Figure 5/ C and D).

Effect of TGF-β, PDGF-B or H₂O₂ treatment on the MMP-12 and IL-24 expression in embryonic kidney cells

The effect of 24h rhTGF-β, rhPDGF-B or H₂O₂ treatment on the mRNA expression of MMP-12 and IL-24 was investigated in HEK-293 embryonic kidney cell line by RT-PCR. rhTGF-β treatment significantly decreased the mRNA expression of MMP-12 and IL-24 compared to vehicle-treated controls (p<0.05, respectively). While administration of rhPDGF-B or H₂O₂ significantly increased the mRNA expression of MMP-12 (p<0.05 vs. Control), mRNA expression of IL-24 remained unchanged (Figure 6).

Effect of TGF-β, PDGF-B and H₂O₂ on the MMP-12 and IL24 expression of human proximal tubular epithelial cells

To investigate the effect of 24h rhTGF-β, rhPDGF-B and H₂O₂ treatment on the mRNA expression of MMP-12 and IL-24 in HK-2 human proximal tubular epithelial cell line, RT-PCRs
were performed. rhTGF-β significantly decreased the mRNA expression of MMP-12 and IL-24 in HK-2 cells compared to vehicle-treated controls (p<0.05, respectively). Administration of rhPDGF-B had no effect on the MMP-12 or IL-24 expression in HK-2 cells. While treatment with H₂O₂ significantly increased the mRNA expression of MMP-12 (p<0.05 vs. Control) it did not alter the mRNA expression of IL-24 in HK-2 cells compared to vehicle-treated controls (Figure 7).

IL-20Rβ expression in human embryonic kidney and proximal tubular epithelial cells

To investigate the presence of IL-20Rβ on HEK-293 embryonic kidney and HK2 human renal tubular epithelial cells fluorescent immunohistochemical staining was performed. We found strong IL-20Rβ immunopositivity in HEK-293 and HK-2 cells as well (Figure 8).

![Fig. 4. Protein level of matrix metalloproteinase (MMP)-12 and interleukin (IL)-24 in the kidney of newborn rats 10 days after the onset of unilateral ureteral obstruction (UUO) or sham-operation. Increased protein level of MMP-12 (A) and IL-24 (B) were found in the kidney of newborn rats underwent UUO compared to sham-operated controls. The representative flow cytometric histograms show the changes in the level of MMP-12 (C) and IL-24 in the kidneys (D) following UUO. Results are presented as mean±SD. **p<0.01 vs. Control.](image)

![Fig. 5. Representative pictures of kidney sections of sham-operated control (A, C) and unilateral ureteral obstructed (UUO) newborn rats (B, D) stained with anti-metalloproteinase (MMP)-12 and anti-interleukin (IL)-24 monoclonal antibodies. Tubular epithelial (arrowheads) and glomerular cells (arrows) of control (A) and ureteral obstructed kidneys (B) show uniform staining for MMP-12. IL-24 immunopositivity was present only in the renal tubular epithelial (arrowheads) and glomerular cells (arrows) of rats underwent UUO (D). Original magnification, ×200. Scale bar, 50 μm.](image)
Fig. 6. Effect of transforming growth factor (TGF)-ß (A, D), platelet derived growth factor (PDGF)-B (B, E) and \(\text{H}_2\text{O}_2 \) (C, F) on the mRNA expression of matrix metalloproteinase (MMP)-12 and interleukin (IL)-24 in HEK-293 embryonic kidney cells. Results are presented as mean±SD. *p<0.05 vs. Control.

Fig. 7. Effect of transforming growth factor (TGF)-ß (A, D), platelet derived growth factor (PDGF)-B (B, E) and \(\text{H}_2\text{O}_2 \) (C, F) on the mRNA expression of matrix metalloproteinase (MMP)-12 and interleukin (IL)-24 in HK2 human renal tubular epithelial cells. Results are presented as mean±SD. *p<0.05 vs. Control.
Effect of IL-24 treatment on the IL-1β, TNF-α, IL-6, MMP-3, MMP-7 and MMP-12 expression of embryonic kidney and human proximal tubular epithelial cells

The effect of 24 h rhIL-24 treatment on the mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) as well as MMPs (MMP-3, MMP-7 and MMP-12) was investigated in HEK-293 and HK2 cell lines by RT-PCR. rhIL-24 treatment significantly decreased the expression of IL-6 (p<0.05 vs. Control) in HEK-293 cells, but in the HK-2 cells it remained unchanged. rhIL-24 treatment also decreased the mRNA expression of MMP-3 (p<0.05 vs. Control) both in HEK-293 and HK-2 (p<0.05 vs. Control) (Figure 9) cells. The mRNA expression of IL-1β, TNF-α, MMP-7 or MMP-12 (data not shown) did not alter in the studied renal epithelial cell lines after rhIL-24 treatment.

Discussion

In the present study our purpose was to identify novel genes and pathways involved in the pathomechanism of CON. CON is the leading cause of pediatric CKD accompanied by diminished renal function [20]. The severity of congenital developmental anomalies of the urinary tract can vary from the subclinical mild or temporary stenosis to complete obstruction. While mild stenosis do not lead to serious clinical consequences sever urinary tract obstruction results in CON [21, 22]. The high morbidity and mortality rate of pediatric patients with CON and the limitations of currently available treatment options emphasize...
the need to better understand the underlying mechanisms [23]. In the present study we used a neonatal rat model of complete UUO. The early postnatal period of rats corresponds to the midgestation phase of humans [24] therefore it is an appropriate model to study the effect of developmental disorders on the progression of CON and the underlying molecular mechanisms.

Our genome-wide analysis performed on newborn rat kidneys revealed 880 differentially expressed genes following complete UUO. Enrichment analysis of these genes resulted in GO terms (Supplemental Table 2.-4.) and molecular pathways (Supplemental Table 5.) associated mainly with the immune homeostasis, which confirms that developmental abnormalities trigger chronic renal inflammation leading to the excessive deposition of ECM components and consequent renal fibrosis [22].

In the present study we found that 3 of the 10 most upregulated genes, including MMP-3, MMP-7 and MMP-12 are members of the family of MMPs. So far 25 members of the MMP family are known and through their ability to cleave collagens, elastin and other ECM components they play essential role in tissue remodeling [25]. However the biological function of MMP-12, also known as macrophage metalloelastase is less studied. Although, its involvement in the pathomechanism of neonatal UUO has been completely unknown. In accordance with to our present findings, increased mRNA expression of MMP-12 was shown in the kidneys of adult mice after 7 days of UUO and also in the kidney of PKD/Mhm rats which are used to study the molecular mechanism of human autosomal polycystic kidney disease [26-28]. To the best of our knowledge, so far there has been only one study carried out by Abraham et al., which investigated the role of MMP-12 in mice model of UUO induced renal fibrosis [25]. Using MMP-12 KO mice they observed that MMP-12 gene deficiency does not alter the relative area of αSMA or collagen deposits in the obstructed kidney suggesting that MMP12 does not play an essential role in the development of renal fibrosis. However in contrast to the observations of Abraham et al. Churg et al. demonstrated that MMP-12 play a central role in the cigarette smoke-induced lung inflammation and connective tissue breakdown [29, 30]. Moreover, Pellicoro et al. observed enhanced MMP-12-induced degradation of elastin in an experimental model of liver fibrosis suggesting its crucial role in ECM remodeling [31].

To clarify the contradiction, in the present study to clarify the contradictions we investigated the role of the well-known determinative molecules of organ fibrosis on the synthesis of MMP12. Previously, it has been demonstrated that TGF-β [32-34], PDGF-B [35] or oxidative stress [36, 37] play a central role in the activation of renal fibroblasts and also in the regulation of the synthesis of MMPs including MMP-1, MMP-2, MMP-9 and MMP-10 [38-42]. Our in vitro experiments demonstrated that while rhPDGF-B treatment or oxidative stress increased the expression of MMP-12 of HEK-293 or HK-2 cells, treatment with rhTGF-β, the strongest known inducer of ECM deposition inhibited its synthesis. Taken together, based on our in vivo and in vitro experiments and the previous observations demonstrating that MMP-12 can effectively degrade the components of ECM it is easily acceptable that during the early phase of fibrosis when the remodeling of ECM is in the foreground of the process, MMP12 actively participate in the degradation of the ECM components. However, later when tissue remodeling is shifted towards the TGF-β-driven increased deposition of ECM, the synthesis of MMP-12 is decreased, thus facilitating further accumulation of the scar tissue.

In addition to the results discussed above, the expression of IL-24 a member of the IL-20 subfamily, belonging to the grater IL-10 family of cytokines, was also significantly elevated in the kidney of neonate rats following UUO. IL-20 subfamily of cytokines are mainly produced by immune cells and classified into the subfamily based on their common receptor heterodimers (IL22RA1 or IL-20RA/IL-10RB or IL-20RB) and similarities in their target cell specificity [43, 44]. Importance of the IL-20 subfamily of cytokines has been proposed in different chronic inflammatory diseases. Indeed, members of the IL-20 subfamily have been suggested to facilitate the communication between the immune system and epithelial cells thereby enhancing innate defense mechanisms [45]. To date, most experiments have focused
on IL-22, making it the best characterized member of the IL-20 subfamily. However, elevated urinary protein level of IL-19 was shown in adult patients with stage-5 CKD [46], and its increased renal expression was observed in the mouse model of ischaemia-reperfusion-induced acute kidney injury[47]. Involvement of IL-20 subfamily in the pathomechanism of CON is less known.

To the best of our knowledge this is the first study demonstrating the increased mRNA expression and protein level of IL-24 in relation to tissue remodeling of the kidney. Recently, in accordance with our findings increased expression of IL-24 was observed in the edge of cutaneous rat wounds [48]. Furthermore, adenoviral overexpression of IL-24 was demonstrated to suppress the proliferation of fibroblasts isolated from human keloids [49] suggesting the role of IL-24 in tissue remodeling and/or fibrosis. Interestingly, in the present study we found that rhTGF-β, rhPDGF-B or H\textsubscript{2}O\textsubscript{2} may inhibit or do not alter the synthesis of IL-24 suggesting rather a negative correlation between IL-24 and the main profibrotic factors. Previously, in congruence with our findings Reinhold D et al. found that TGF-β1 inhibits interleukin-10 production in pokeweed mitogen-stimulated peripheral blood mononuclear cells [50].

Finally, investigating the possible biological role of IL-24 we have demonstrated that rhIL-24 treatment downregulates the mRNA expression of MMP3 - which was identified as the most upregulated gene in our animal model of CON - in HEK-293 and HK-2 cells. Moreover, rhIL-24 also decreased the mRNA expression of pro-inflammatory cytokine IL-6 in the HEK-293 cells. Considering that IL-24 is a member of the family of IL-10 cytokines our results might not be so surprising. Indeed, it has been demonstrated that IL-10 deficiency aggravates kidney inflammation and fibrosis in the mouse model of unilateral ureteral obstruction [51]. Additionally, Semedo et al. and Donizetti et al. found that IL-10 expression was negatively correlated with the expression of fibrotic genes in remnant kidney model and unilateral ischemia model [52, 53]. Studies in other organs, including lung, heart, pancreas and liver, also showed IL-10 can suppress inflammatory response and thereby inhibit matrix remodeling and fibrosis, even if fibrosis had already developed [54-60].

Taken together, the above mentioned literary data and our results suggest that similarly to other members of the IL-10 family of cytokines IL-24 may have anti-inflammatory properties.

Conclusion

In summary, our data provide a bioinformatic analysis of differentially expressed genes and molecular pathways potentially involved in the pathophysiology of CON, thus contributing to the better understanding of the underlying molecular mechanisms. The differentially expressed genes including MMP-3, MMP-7 and MMP-12, IL-19 and -24 have the potential to be used as targets for early diagnosis and treatment of CON. Our data suggest that IL-24 plays a role in the pathophysiology of CON via regulation of immune response and tissue remodeling.

Disclosure Statement

The authors declare no competing interests.

Acknowledgments

We are grateful to Maria Bernáth for her excellent technical assistance. This work was supported by Hungarian National Scientific Research Foundation Grant - OTKA K116928, K108688, NN114607, PD105361 and LP008/2016.
References

Pap et al.: Novel Genes and Pathways in Neonatal Ureteral Obstruction

