The Value of lncRNA HULC as a Prognostic Factor for Survival of Cancer Outcome: A Meta-Analysis

Xian Chen Limin Lun Huabin Hou Runhua Tian Haiping Zhang Yunyuan Zhang

Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, China

Key Words
LncRNA • HULC • Overall survival

Abstract
Aims: Growing evidence from recent studies has shown that lncRNA HULC plays a role in the development of multiple carcinomas. This meta-analysis aimed to analyze available data to identify the prognostic value of HULC in multiple tumors. Methods: A systematic search was performed by using PubMed (medline), Embase, ISI Web of Knowledge, Springer, the Cochrane Library, Scopus, BioMed Central, ScienceDirect, Wanfang, Weipu, and China National Knowledge Internet (CNKI) computerized databases from inception to Nov 30, 2016. The quality of the publications was assessed according to the critical review checklist of the Dutch Cochrane Centre proposed by MOOSE and PRISMA. Pooled hazard ratios (HR) with 95% confidence interval (95% CI) were calculated to summarize the effect. Results: A total of ten studies with 1077 cancer patients were pooled in the present meta-analysis to evaluate the prognostic value of HULC in multiple tumors. High expression levels of HULC were demonstrated to be associated with poor overall survival (OS) (HR=2.44, 95% CI: 1.96-3.03, P=<0.0001). Subgroup analysis showed that cancer type (digestive or non-digestive disease), residence region (China), sample size (more or less than 100) and follow-up months (more or less than 60) did not alter the predictive value of HULC on OS in various cancers. Additionally, increased HULC expression was found to be moderately associated with tumor stage and progression (III/IV vs. I/II: HR=1.59, 95% CI: 1.31-1.92, P=<0.00001). Furthermore, elevated HULC expression significantly predicted distant metastasis (HR=3.90, 95% CI: 1.89-8.02, P=0.0002) and lymph node metastasis (HR=2.04, 95% CI: 1.03-4.05, P=0.04) respectively. No significant heterogeneity was observed among studies except lymph node metastasis. Conclusion: The results indicate that HULC expression level is an independent prognostic biomarker for unfavorable OS and metastasis in general tumors.

Introduction
Cancer is becoming the leading cause of mortality and morbidity for human health over the past decade [1]. According to 2014 Cancer Statistics, an estimated 1,665,540 new cancer...
cases and 585,720 cancer deaths are projected to occur in the United States [2]. To date, the mechanisms of oncogenesis and tumor progression have not been fully clarified and the widely used prognostic markers are still tumor node metastasis (TNM) stage and grade, histological differentiation grade, and tumor size etc. Thus, many scientists are devoted to identify new potential biomarker for forecasting prognosis and predicting the therapeutic efficacy for cancer patients to improve their survival status [3, 4].

Non-coding RNAs refer to different types of RNA which can not produce biologically meaningful RNA transcripts, usually including small interfering RNA (short interfering RNA, siRNA), PIWI-interacting RNA (piRNA), microRNA (miRNA) and long noncoding RNAs (lncRNAs) etc. [5, 6]. Recent articles have indicated that at least 95% of the human genome undergoes transcription to a huge array of RNA species and most of them are longer than 200 nucleotides [7]. Mounting evidence links expression changes of lncRNAs with complex diseases such as cancer. The dysregulation suggests that lncRNAs emerge as vital modulators in carcinomas and thus further emphasize the potential role of lncRNAs in tumorigenesis and tumor progression [8-10].

Highly up-regulated in liver cancer (HULC), as one of the most up-regulated ncRNAs, was first identified from an HCC-specific gene expression profiling [11, 12]. Recently, many observations indicate that the striking promoted expression pattern was associated with worse survival and high risk of cancer metastasis in patients with various carcinomas [13, 14]. However, most individual studies assessing the implications of HULC levels in cancer have been limited by small sample sizes and the controversial results. Therefore, a comprehensive meta-analysis of all eligible articles was performed to further evaluate the clinical feasibility of HULC as a novel biomarker candidates as well as useful insights into the tumor clinicopathological features.

Material and Methods

Search strategy and Literature selection

Up to November 30, 2016, potential eligible literatures which evaluated the lncRNA HULC as a putative biomarker for the prognosis and metastasis of various tumors, were searched in several computerized databases, including PubMed, Embase, Cochrane Library, ScienceDirect, BioMed Central, Springer, ISI Web of Knowledge, together with three Chinese databases: China National Knowledge Internet (CNKI), Wanfang and Weipu databases. The searched terms in variably combinations were listed as follows: (“long noncoding RNA-, lnc RNA-, highly up-regulated in liver cancer, HULC,”) and (“cancer” or “carcinoma” or “tumor” or “neoplasm”) and (“prognosis” or “prognostic” or “survival” or “metastasis”). The reference lists of primary literatures were manually searched for additional relevant articles.

Inclusion and exclusion criteria

Inclusion criteria are as following: 1) Articles investigating the expression pattern of HULC in any malignant tumor; 2) Definite diagnosis or histopathology confirmed for patients with cancer; 3) Sufficient data for the computation of hazard ratio (HR) and corresponding 95% confidence intervals (CI); 4) Studies with enough information to construct the 2×2 contingency Table.

Exclusion criteria are as following: 1) Studies investigating the molecular structure and functions of HULC or literatures not pertinent to the HULC; 2) Studies of non dichotomous HULC expression and absence of survival outcome; 3) Duplicate publications as well as multiple duplicate data in the different works, excluding earlier and smaller sample data; 4) Correspondences, animal experiments, letters, editorials, expert opinions, talks, reviews and case reports without original data.

Data extraction and Quality Assessment

Two investigators (XC and YYZ) extracted all the essential information from identified articles independently. According to the inclusion and exclusion criteria, the following information from each enrolled study was extracted: (1) first authors, publication year, study population, patients and controls size, tumor type, follow-up month; (2) HULC assessment method and specimen; (3) HR and their 95%
CI of HULC value for overall survival (OS), distant metastasis (DM) or lymph node metastasis (LNM). If any essential information were not available from the original article, best efforts were made to contact the corresponding author to obtain the missing data. If only Kaplan-Meier curves were provided in some studies, the survival rates were extracted from the graphical survival plots and the calculated HR and 95% CI was determined as the published methods [15, 16]. As shown in supplementary materials (Checklist Table 5 and Table 6), all the included publications were evaluated based on the critical checklist of the Dutch Cochrane Centre proposed by MOOSE and PRISMA.

Statistical analysis

The present analyses were performed using Stata SE12.0 (Stata Corporation) and RevMan5.1 software. The impact of HULC expression on clinical prognosis and metastasis was described as HR and corresponding 95% CI. The combined effect size (ES) was considered as HR and should be statistically significant when the 95% CI did not overlap with 1. Heterogeneity across the enrolled studies was quantified with the I^2 statistics. The fix-effects model with the inverse variance method was conducted to analyze the relationship between HULC expression and clinical outcomes when calculated $I^2 < 50\%$ [17, 18]. Probable publication bias was displayed not only by constructing a funnel plot, but also conducting Begg’s test with rank correlation method and Egger’s bias indicator test with linear regression method respectively [19-21]. P values < 0.05 was considered statistically significant.

Results

Included literatures

A total of 257 studies were retrieved from an initial online literature search that related to the prognosis and metastasis of HULC and cancer. After carefully screening the titles and abstracts, 234 articles were excluded according to the inclusion and exclusion criteria. For the remaining potential candidate studies, 23 articles were further reviewed of the full texts, 1 study was excluded as the specimen sources was not clearly described, 12 studies were then excluded because HULC was not a dichotomic variable in the original studies. As shown in Fig 1, the selection process with specification was presented by a flow diagram. Ultimately, the present meta-analysis was conducted for the remaining 10 articles.

Fig. 1. Flow diagram of the study search and selection process.
Table 1. Summary of the ten included studies. Study design is described as retrospective (R); PC, Pancreatic cancer; OSA, osteosarcoma; GC, gastric cancer; LBL, large B-cell lymphoma; CC, cervical cancer; DM, distant Metastasis; LNM, Lymph Node Metastasis; VM, Vascular metastasis

<table>
<thead>
<tr>
<th>Study</th>
<th>Origin of population</th>
<th>Study design</th>
<th>Disease</th>
<th>No of patients</th>
<th>Stage</th>
<th>HULC assay</th>
<th>Survival analysis</th>
<th>Metastasis analysis</th>
<th>Hazard ratios</th>
<th>Follow-up Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peng et al. 2014 [22]</td>
<td>China</td>
<td>R</td>
<td>PC</td>
<td>304</td>
<td>NA</td>
<td>qRT-PCR</td>
<td>OS</td>
<td>LNM/VM</td>
<td>HR-K/M</td>
<td>60</td>
</tr>
<tr>
<td>Sun et al. 2015 [13]</td>
<td>China</td>
<td>R</td>
<td>OSA</td>
<td>78</td>
<td>III/IIIB-III</td>
<td>qRT-PCR</td>
<td>OS</td>
<td>DM</td>
<td>HR-K/M</td>
<td>60</td>
</tr>
<tr>
<td>Uzan et al. 2016 [26]</td>
<td>Brazil</td>
<td>R</td>
<td>OSA</td>
<td>33</td>
<td>I/II/III-IV</td>
<td>qRT-PCR</td>
<td>OS/IFS</td>
<td>DM</td>
<td>K-M</td>
<td>60</td>
</tr>
<tr>
<td>Wang et al. 2016 [27]</td>
<td>China</td>
<td>R</td>
<td>CC</td>
<td>244</td>
<td>IIIb-IIIa/IIb-IIIa</td>
<td>qRT-PCR</td>
<td>OS</td>
<td>LNM</td>
<td>HR-K/M</td>
<td>60</td>
</tr>
<tr>
<td>Xie et al. 2013 [29]</td>
<td>China</td>
<td>R</td>
<td>HCC</td>
<td>30</td>
<td>I/II/III-IV</td>
<td>qRT-PCR</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Li et al. 2015 [30]</td>
<td>China</td>
<td>R</td>
<td>HCC</td>
<td>66</td>
<td>I/II/III-IV</td>
<td>qRT-PCR</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Fig. 2. Forest plot for the association between HULC expression with overall survival (OS).

Characteristics of the enrolled studies

The main features of the 10 enrolled articles are summarized in Table 1 [13, 22-30]. These studies were published between 2013 and 2016 with sample sizes ranging from 30 to 304. All of the 1077 patients were divided into two groups (high and low expression of HULC) according to the qRT-PCR measurement results. Nine of ten studies were from China and the patients were 6 types of carcinomas, including hepatocellular carcinoma, gastric cancer, pancreatic cancer, osteosarcoma, cervical cancer and large B-cell lymphoma. Of note, the median value was selected as the cut-off value in most articles.

HULC and main outcome

The fix effects model was used to analysis the pooled HR and its 95% CI because no obvious heterogeneity among those 8 studies which involved in OS analysis (I^2<50%). According to meta result in multivariate analysis, enforced HULC expression was predictive of unfavorable OS in various carcinomas (HR=2.44, 95%CI: 1.96-3.03, P=0.000) (Fig. 2).

Afterwards the stratified analyses were performed by factor of country, cancer type, sample size and follow-up month to further analyze the clinical features of HULC (Table 2). For studies evaluating OS in different types of cancer, the results suggested that promoted HULC levels could estimate worse outcome in digestive system or non-digestive system malignancies, with the pooled HR of 2.57 (95% CI: 1.96-3.03, P=0.000), and 2.21 (95% CI: 1.54-3.17, P=0.000) respectively (Fig. 3A). A significant unfavorable association between HULC and OS of cancer patients was detected in China (HR= 2.41, 95%CI: 1.93–3.01, P=0.000) (Fig. 3B). Subsequently, we found that neither sample size nor follow up month alter the predictive value of HULC on the OS for all involved cancers (Fig. 3C and 3D). No significant heterogeneity was detected across studies within the subgroups.
As shown in Fig. 4, increased HULC expression was found to be moderately associated with tumor stage and progression (III/IV vs. I/II: HR=1.59, 95% CI: 1.31-1.92, P<0.00001).
Overall, the pooled HRs revealed that HULC expression might be served as an unfavorable independent prognostic biomarker in various types of cancers.

HULC and metastasis

The characteristics of the involved studies which evaluating the association between HULC levels and cancer metastasis were summarized in Table 3 and 4. A fix model was performed to calculate the pooled HR and its 95% CI when there is no obvious heterogeneity between studies ($I^2<50\%$). As shown in Fig. 5, elevated HULC expression significantly predicted DM (HR=3.90, 95% CI: 1.89-8.02, $P=0.0002$) and LNM (HR=2.04, 95% CI: 1.03-4.05, $P=0.04$) respectively.

Publication bias

The potential publication bias of the present meta-analysis was evaluated by a funnel plot, Begg’s test and Egger’s test. No evidence of publication bias in the multivariate analysis.
of OS for Begg’s and Egger’s test ($P=0.23$ and $P=0.45$), and the shapes of the funnel plot did not reveal any evidence of obvious asymmetry (Fig. 6).

Sensitivity analysis
The stability of the crude results was evaluated by sensitivity analysis. The results suggested that the conclusions are stable because the pooled HR was not significantly affected by the exclusion of any single study (Fig. 7).

Discussion
LncRNAs were defined as transcriptional noise in the past decades because most of them produced from intergenic and intronic regions of the genome and lack protein coding...
capability [5, 31]. In recent years, tremendous contributions were made by scientists to the discovery that lncRNAs regulate the target gene expression and act as oncogenic or tumor suppressors [32-34]. With the rapid development of high-throughput genome-wide analysis technology, lncRNAs have been proposed as promising biomarkers for early detection and accurate prognosis for various carcinomas [35, 36].

As one of the promising novel biomarkers with high accuracy prognostic value for cancer patients, HULC has been noted to associate with diverse cellular processes, including migration, invasion, proliferation, differentiation, and apoptosis and are thereby prone to be involved in the tumorigenesis and progression [12, 14, 37, 38]. For example, HULC has been demonstrated to regulate hepatocellular cancer (HCC) proliferation through a miR-9-mediated RXRA signaling pathway or suppressing the expression of tumor suppressor p18 [39, 40]. Additionally, HULC may function as a competing endogenous RNA (ceRNA) in HCC that binds to and reduces the expression of a number of miRNAs. The reduction of miR-220a-3p and miR-372 leads to tumor progression through the miR-200a-3p/ZEB1 and miR-372/PRKACB signaling pathway respectively [24, 41]. Though a large number of studies have explored HULC interaction partners and molecular functions in various tumors, the mechanisms underlying HULC and tumor progression are still elusive.

Emerging evidence is encouraging that high expression of HULC serves as a convinced poor prognosis in several types of cancers, such as hepatocellular carcinoma, gastric cancer, pancreatic cancer, osteosarcoma, cervical cancer and large B-cell lymphoma. According to the urgently needed of potential prognostic biomarkers for individual therapy to the high-risk cancer patients, we firstly performed the present comprehensive and detailed meta-analysis to investigate the clinical prognostic role of HULC with a variety of carcinomas. Ten studies including 1077 patients were pooled in this study, and the results indicate that elevated HULC expression was significant correlated with poor prognosis, progression, DM and LNM in patients with various types of cancer. The analysis showed a pooled HR was 2.44 (95% CI: 1.96-3.03, \(P=0.000\)), 1.59 (95% CI: 1.31-1.92, \(P<0.00001\)), 3.90 (95% CI: 1.89-8.02, \(P=0.0002\)) and 2.04 (95% CI: 1.03-4.05, \(P=0.04\)) for OS, progression, DM and LNM respectively.

<table>
<thead>
<tr>
<th>Table 6. PRISMA checklist</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
</tr>
<tr>
<td>Section topic</td>
</tr>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>METHODS</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ELIGIBILITY CRITERIA</td>
</tr>
<tr>
<td>INFORMATION SOURCES</td>
</tr>
<tr>
<td>SEARCH</td>
</tr>
<tr>
<td>STUDY SELECTION</td>
</tr>
<tr>
<td>DATA EXTRACTION PROCESS</td>
</tr>
<tr>
<td>DATA ITEMS</td>
</tr>
<tr>
<td>RISK OF BIAS</td>
</tr>
<tr>
<td>INTRA-INDIVIDUAL STUDIES</td>
</tr>
<tr>
<td>SYNTHESIS OF RESULTS</td>
</tr>
</tbody>
</table>
Nevertheless, it should be noted that there are several limitations of this study should be discussed. First, some of the HR were calculated by reconstructing survival curves rather than directly obtained from the primary studies. Second, cut off definition were not reported in some studies, and those reported were different in each study, which might weaken the reliability of our conclusion. In addition, the major patients included in our study were most from China and only one study was from Brazil. Because of this, our finding may just represent patients from Asia. After full texts of involved articles were reviewed, cancerous tissues were examined to determine HULC expression level in most cases, while serum samples were tested in one study. Of note, different specimen sources might be a further bias of the study. Finally, sample size of the study is too small. Only 10 studies with 1077 patients were included in the present meta-analysis. Therefore, we strongly suggest conducting more larger-size and better design studies to confirm our results.

In aggregate, even some limitations mentioned above, it was preliminarily concluded that promoted HULC may be considered as a credible unfavorable prognostic factor in human cancers. In the future, well designed larger-sample studies will be necessary to verify and strengthen the prognostic role of HULC in neoplasm patients.

Acknowledgements

The authors would like to thank the authors of the primary studies. The work was fully supported by the National Natural Science Foundation of China (No. 81501872 and No. 81601821), Distinguished Middle-Aged and Young Scientist Encourage and Reward Foundation of Shandong Province (No. BS2014YY034), China Postdoctoral Science Foundation (No. 2016M592144 and No. 2016M590621), Postdoctoral innovation project of Shandong Province (No. 201603069).

Disclosure Statement

The authors declare that there are no competing interests to disclose.

References

