The Persistent Müllerian Duct Syndrome: An Update Based Upon a Personal Experience of 157 Cases

Jean-Yves Picarda–c Richard L. Cated Chrystèle Racinea–c Nathalie Jossoa–c

aUniversité Paris Diderot, Sorbonne Paris Cité, bInstitut National de la Santé et de la Recherche Médicale Unité 1133, Physiologie de l’axe Gonadotrope, and cCentre National de la Recherche Scientifique, Unité Mixte de Recherche 8251, Biologie Fonctionnelle et Adaptative, Paris, France; dDepartment of Chemistry, Boston University, Boston, MA, USA

Abstract

Male sex differentiation is driven by 2 hormones, testosterone and anti-müllerian hormone (AMH), responsible for the regression of müllerian ducts in male fetuses. Mutations inactivating AMH or its receptor AMHRII lead to the persistent müllerian duct syndrome (PMDS) in otherwise normally virilized 46,XY males. Our objective was to review the clinical, anatomical, and molecular features of PMDS based upon a review of the literature and upon 157 personal cases. Three clinical presentations exist: bilateral cryptorchidism, unilateral cryptorchidism with contralateral hernia, and transverse testicular ectopia. Abnormalities of male excretory ducts are frequent. Testicular malignant degeneration occurs in 33% of adults with the disorder, while cancer of müllerian derivatives is less frequent. Fertility is rare but possible if at least one testis is scrotal and its excretory ducts are intact. Eighty families with 64 different mutations of the AMH gene have been identified, mostly in exons 1, 2, and 5. AMHRII gene mutations representing 58 different alleles have been discovered in 75 families. The most common mutation, a 27-bp deletion in the kinase domain, was found in 30 patients of mostly Northern European origin. In 12% of cases, no mutation of AMH or AMHRII has been detected, suggesting a disruption of other pathways involved in müllerian regression.

© 2017 S. Karger AG, Basel

Keywords
AMH · AMHRII · Cryptorchidism · Infertility · Malignant degeneration · Mutation

Male sex differentiation is driven by 2 distinct hormones [Jost, 1953], each produced by a separate cell compartment of the fetal testis. Testosterone produced by fetal Leydig cells maintains wolffian ducts and promotes virilization of external genitalia. Anti-müllerian hormone (AMH), a member of the TGF-β family [Cate et al., 1986] and synthesized by fetal Sertoli cells [Josso, 1973], is responsible for the regression of fetal müllerian ducts, which in its absence would differentiate into uterus, Fallopian tubes, and upper vagina. Disorders of sex development (DSD) in males may affect either one or both hormones. The persistent müllerian duct syndrome (PMDS) belongs to the first category: AMH is either not secreted or inactive, while testosterone is normally produced and metabolized. External virilization is complete but, due to AMH deficiency, müllerian ducts do not regress and coexist with testes and male excretory ducts. Nilson [1939] is often credited with the description of the first case, but...
earlier publications can be found in the world literature [Jordan, 1895; Webster, 1906].

PMDS is defined as the presence of müllerian derivatives, uterus, and Fallopian tubes in otherwise normally masculinized 46,XY subjects. The PMDS patient is outwardly completely male, the urethra opens at the tip of the penis (there is no hypospadias). The absence of external genital ambiguity differentiates PMDS from mixed gonadal dysgenesis, a completely different type of DSD that affects both Leydig and Sertoli cells. Until 1989, diagnosis was based exclusively upon clinical data, but following the cloning of the AMH [Cate et al., 1986; Picard et al., 1986] and AMHRII (AMH receptor type II) [Baarends et al., 1994; di Clemente et al., 1994] cDNA and genes, it has emerged that there is not always a perfect agreement between molecular and clinical data. A few individuals with AMH or AMHRII mutations may lack müllerian remnants, whereas in others with clinical features of the condition, no mutations can be detected.

The incidence of PMDS has not been accurately determined. It has the reputation of being a very rare condition. In fact, prior to the advent of Medline, approximately 60 publications had been collated by various authors [Royer et al., 1961; Scriver et al., 1976; Golladay and Redman, 1982]. A total of 200 more have been published between 1964 and 2012 [reviewed by Farikullah et al., 2012]. Since then, the rate has greatly accelerated with 34 new cases published over the last 4 years [reviewed by Elias-Assad et al., 2016]. The apparently increasing incidence may be due to the fact that cryptorchidism, the usual presenting symptom, is now investigated early in life, laparoscopy has become routine, and more surgeons are aware of the condition now than in the past. Between 1990 and 2016, our group has performed molecular studies in 157 families with PMDS. Mutations of either the AMH or AMHRII gene have been detected in 88% of cases. This review is based on our personal experience and upon the literature accessible to us in complete or abstract form.

Anatomical Features

Position of the Testes

During normal male embryological development, under the influence of AMH, müllerian ducts have totally disappeared at 10 weeks of fetal development, releasing the testes from their initial position in the pelvis and allowing them to reach the scrotum, provided the cord is of sufficient length. If the müllerian ducts fail to regress, the
testes remain suspended in the broad ligament. In females, the broad ligament is solidly attached to the pelvis, but in PMDS, the connection is usually flimsy or nonexistent [Miller et al., 2004], allowing the testes, still attached to the Fallopian tubes, to descend towards the inguinal canal and scrotum, dragging the uterus in their wake.

The degree of mobility of müllerian derivatives determines the position of the testes (Fig. 1). Schematically, if the uterus is fixed in the pelvis, the testes retain a high “ovarian-like” location; alternatively one or both testes may make it into the inguinal canal or the scrotum, dragging the müllerian derivatives along. Often, one testis is contained in an inguinal hernia together with the uterus and one Fallopian tube, hence the name of “hernia uteri inguinalis” given to this condition. Inguinal hernias are very common in all forms of PMDS and may develop at any time postnatally. The anatomical condition most specific of PMDS is transverse testicular ectopia. Both testes have descended into the same hemi-scrotum and are contained in the same hernial sac, together with the uterus and tubes. Testicular fusion has been reported in this condition [Zhapa et al., 2010].

The scrotal PMDS testis is only loosely anchored to the bottom of the processus vaginalis by a thin gubernaculum resembling the round ligament of the uterus [Hutson et al., 1994]. It is abnormally mobile and easily drawn into the contralateral scrotal pouch. In 2 of our cases, transverse testicular ectopia was the only sign of an AMH mutation, as müllerian derivatives had regressed normally. Rarely, one or both testes are missing in patients fulfilling the criteria for PMDS [Imbeaud et al., 1995a; Souto et al., 1995; El-Gohary, 2003]. Testicular torsion, facilitated by the abnormal mobility of the testes, has been incriminated [Chaabane et al., 2010].

There is no significant difference in anatomy between patients with either AMH or AMHRII gene mutations. Slightly more than half of the patients present with bilateral cryptorchidism, 20% with unilateral cryptorchidism and contralateral hernia, and the rest with transverse testicular ectopia. In contrast, the characteristic transverse testicular ectopia has never been observed in patients with “idiopathic” PMDS, i.e., those with apparently intact AMH and AMHRII genes (Fig. 2). The position of the testes/müllerian duct complex in PMDS may differ between brothers with the same genotype [Knebelmann et al., 1990; Abduljabbar et al., 2012; Nalbantoglu et al., 2015]. In patients described in the literature in whom molecular analysis has not been performed, the proportions are not very different: 41% for bilateral cryptorchidism, 32% for hernia uteri inguinalis, and 27% for transverse testicular ectopia.

Male Excretory Ducts

The anatomy of the male excretory ducts deserves special attention. Initially, the vas deferens is included in the mesosalpinx and then reaches the uterine wall, eventually penetrating it to open at the top of the vagina, the anatomical equivalent of the prostatic utricle (Fig. 1). The spermatic vessels are usually very short and must be divided at surgery to allow placement of the testis in the scrotum. This leaves the vascularization of the testis at the mercy of the deferential artery, in close proximity to the müllerian derivatives and therefore easily damaged by attempts to remove them (see Treatment). In PMDS, the vas is often abnormal, narrow, blind, or even absent. Epididymal dissociation from the testis is common. Abnormalities of male excretory ducts are often reported in the literature [Bhatnagar, 1962; Binns and Cross, 1967; Scrivere et al., 1976; Sloan and Walsh, 1976; Mouli et al., 1988; Morikawa et al., 2014]. Ductal and/or epididymal abnormalities were specifically mentioned in 9 and 13 of patients with respectively AMH and AMHRII mutations and in 2 idiopathic cases with no detected molecular defects. However, ductal and epididymal anomalies are commonly associated with cryptorchidism, particularly its abdominal variant, even in the absence of PMDS [Mollaeian et al., 1994; Sharma and Sen, 2013].
Müllerian Derivatives

The development of müllerian derivatives is extremely variable, even between brothers. The uterus may be comparable in size to that of normal females but it is often much smaller. Uterus and tubes are often contained in an inguino-scrotal hernia where they are easily detectable at surgery. However, when the uterus is retained in the pelvis, its presence can be missed [El-Gohary, 2003; Farikullah et al., 2012; Goto et al., 2012] as seen in several of our patients. The müllerian ducts enter the upper urethra at the level of the prostate, but the communication is often obliterated. Sometimes, müllerian derivatives are not found in subjects bearing an AMH or AMHRII mutation. They may be totally asymptomatic [Abduljabbar et al., 2012] or present with isolated transverse testicular ectopia.

Clinical Features

In children, PMDS is usually discovered at surgery or laparoscopy motivated by cryptorchidism with or without inguinal hernia (Fig. 3). Unilateral or bilateral cryptorchidism is not particularly evocative, although unilateral cryptorchidism with contralateral hernia and particularly transverse testicular ectopia should awake suspicion. If a sibling has been diagnosed with the condition, imaging investigations should be scheduled [Di Cesare et al., 1998; Dekker et al., 2003]. Ultrasonography of the scrotum and pelvis is generally sufficient to suspect PMDS, but magnetic resonance imaging could be necessary to recognize the different structures. Occasionally, the patient has a history of a previous surgical procedure for hernia or inguinal cryptorchidism. Adults in whom cryptorchidism or inguinal hernia have been disregarded may come to medical attention because of hematuria due to hormonal imbalance in aging patients whose testes produce less androgens and an excessive amount of estrogens [Gricourt et al., 2010]. Cyclic hematuria led to the discovery of PMDS in a 27-year-old patient with no apparent hormonal abnormalities [Smith-Harrison et al., 2015]. More often, discovery of PMDS in adults is contingent upon the development of testicular or müllerian malignancies.

Malignant Degeneration

Nowadays in developed countries, cryptorchidism is treated as early as possible to avoid damage to germ cells, but formerly, this was usually not the case. Adult PMDS patients were often diagnosed because of malignant degeneration of the testes or the müllerian remnants. The incidence of testicular cancer in PMDS has been previously estimated at 18%, no higher than the risk for cryptorchid testes in general [Bucci et al., 2002; Shamim, 2007]. Our own perusal of the literature yields a much higher figure: 33% of PMDS patients 18 years and older experienced some form of unilateral or bilateral malignant testicular degeneration. Seminomas are the most frequent, but choriocarcinomas [Giri et al., 2004; Aboutorabi et al., 2005], mixed germ cell tumors [Eastham et al., 1992; Manassero et al., 2004; Jaka and Shankar, 2007; Mohapatra and Subramanya, 2016], embryonal cell carcinoma [Melman et al., 1981; Carré-Eusèbe et al., 1992; Barad et al., 2016], gonadoblastomas [Morillo-Cucci and German, 1971], or yolk sac tumor [Snow et al., 1985] have also been described. In our own cohort, we encountered 3 testicular tumors (H069 and H050) [Carré-Eusèbe et al., 1992] and H009, all adults with AMH mutations (online suppl. Table 1; for all online suppl. material, see www.karger.com/doi/10.1159/000475516). Young patients may be affected by germ cell neoplasia in situ, as seen by Williams et al. [1994] in a 17-year-old patient and by ourselves in a 15-month-old boy with a receptor defect (R031) (online suppl. Table 2). Early orchidopexy is recommended to preserve against testicular degeneration but is not necessarily 100% effective. Melman et al. [1981] have reported embryonal carcinoma in a 16-year-old boy who had undergone bilateral orchidopexy at 2 months of age. Likewise, Manassero et al. [2004] observed a mixed germ cell tumor in a 23-year-old patient operated at 5 years of age for transverse testicular ectopia.

Fig. 3. Operative findings in a patient with a mutation of the AMH receptor, showing the adherence of the testes to the Fallopian tubes. Before surgery, this patient had transverse testicular ectopia. Reprinted with permission from Abduljabbar et al. [2012].

Downloaded by: 54.70.40.11 - 11/20/2017 4:33:54 PM
These observations, in addition to the abnormally high incidence of testicular cancer in PMDS compared to simple cryptorchidism suggests that misplacement of the testis may not be the only factor favoring malignant degeneration in this disorder. In mice, deletion of the AMH [Behringer and Cate, 1994; Matzuk et al., 1995] or AMHRII gene [Tanwar et al., 2012] facilitates testicular tumors induced by respectively inhibin suppression or WT1/ß-catenin imbalance. Prognosis depends upon the histological type of the tumor; choriocarcinomas [Giri et al., 2004; Aboutorabi et al., 2005] and mixed germ cell tumors [Manassero et al., 2004; Jaka and Shankar, 2007] share a poor prognosis.

Malignant degeneration of müllerian derivatives is much less frequent. Farikullah et al. [2012] found 11 cases of male müllerian duct degeneration in the literature, but only 3 qualified as PMDS. The rest were so-called “müllerian” cysts, i.e., prostatic utricle cysts [Kato et al., 2002] which arose at the site of confluence between the urogenital sinus, the müllerian, and the wolffian ducts [Glenister, 1962]. Hematuria is often the presenting sign [Thiel and Erhard, 2005]. Two young men with uterine adenocarcinoma died from metastatic disease, one at 14 years of age [Thiel and Erhard, 2005] and the other at the age of 39 years [Romero et al., 2005]. An additional patient [Kovachev et al., 2014] was diagnosed with a benign uterine leiomyoma.

Infertility
Infertility is the most frequent complication of PMDS. In our personal experience, only one patient with an AMH mutation (H071) fathered a child after testicular sperm extraction motivated by oligo- and asthenozoospermia. We noted similar sperm defects in 2 other patients, one with an AMH and the other with an AMHRII mutation [Zeller et al., 1994]. In the literature, sterility is indeed the rule, but normal spermatogenesis has also been reported. A thorough literature search found that 19% of reported adult patients fathered 1 or more children [Karimi-Nejad et al., 1988; Farag, 1993; Berkmen, 1997; Aboutorabi et al., 2005; Liang et al., 2006; Jaka and Shankar, 2007; Prakash et al., 2009; Sichani et al., 2009; Inuganti et al., 2011; Kaore and Kaore, 2012; Kumar and Mohan, 2012; Kovachev et al., 2014; Sherwani et al., 2014; Agrawal and Kataria, 2015; Modi et al., 2015]. Farag [1993] reported a proportion of 11% of fertile patients in Kuwait and neighboring populations. All these patients except for one [Modi et al., 2015] presented with either transverse testicular ectopia or hernia uteri inguinalis, i.e., at least 1 testis was in a normal scrotal position.

Proof of paternity was not provided, but it is unlikely that all births could be the result of extra-conjugal relationships, particularly since many of the reports originated from countries where contact between the sexes is strongly discouraged outside of matrimony. We conclude that fertility is rare but possible in PMDS provided 2 conditions are met: at least 1 testis should be normally descended and the excretory ducts should be intact. All fertile PMDS patients fathered children before their condition had been diagnosed. Late diagnosis carries a price, however, many of these patients developed testicular cancer. Of note, PMDS dogs with uni- or bilateral scrotal testes are also fertile [Meyers-Wallen et al., 1989].

Congenital Malformations Associated with PMDS
Various congenital abnormalities have been described in association with PMDS. Intestinal defects such as atresia or lymphangectasia (Urioste syndrome) were described in 4 cases [Klosowski et al., 1997; Bellini et al., 2001; van Haelst et al., 2001]. Hirschsprung’s disease [Cass and Hutson, 1992], horseshoe kidney [Barad et al., 2016], or mental deficiency [Snow et al., 1985], lipodystrophy and vitamin D-resistant rickets [Van Maldergem et al., 1996], renal polikystosis, hydronephrosis, or deafness may also be present, as well as prematurity or small for gestational age syndrome. In our experience, in patients with associated malformations AMH or AMHRII mutations are seldom detected.

Endocrine Investigations
Endocrine investigations in PMDS usually show that Leydig cell function is normal, except in patients with testicular degeneration [Imbeaud et al., 1995a]. The AMH concentration in serum depends upon the molecular origin of the disorder. Very low or undetectable serum AMH concentrations in prepubertal boys are characteristic of mutations of the gene coding AMH. Low AMH concentration in postpubertal and, to a lesser degree, newborn males is physiological [Gribspon et al., 2011] and should not be interpreted as pointing to an AMH mutation. AMH serum concentration may be decreased immediately after surgery. In patients with virilizing defects, such as hypospadias, low AMH reflects testicular dysgenesis, not to be confused with PMDS. Normal values of serum AMH in developing boys are shown in Table 1. AMH was measured in the serum of all our cases by the referring physician. The results are not comparable because they
were obtained with different methods [Nelson et al., 2015]. Normal AMH levels usually exclude an AMH mutation, with the exception of the AMH mutation p.(Gln496His) which is thought to affect receptor binding [Belville et al., 2004]. The sequence variations reported in an Italian patient [Menabo et al., 2008] with a normal serum AMH level could be innocuous, because an AMHRII mutation cannot be ruled out as the gene was not sequenced. Normal-for-age levels of circulating AMH are characteristic of AMHRII mutations, and circulating levels of AMH are usually not increased, as is the case in androgen insensitivity. However, receptor mutations are not always detectable in PMDS patients with normal levels of serum AMH. Idiopathic PMDS is described below.

Inheritance

PMDS is an inherited disease transmitted as an autosomal recessive trait, explained by the location of the AMH gene on the short arm of chromosome 19 [Cohen-Haguenauer et al., 1987] and that of the AMHRII gene on the long arm of chromosome 12 [Imbeaud et al., 1995b]. The rate of consanguinity is high: 40 and 33% in families with AMH and AMHRII mutations, respectively, but only 10% in idiopathic PMDS. The rate of homozygosity varies in different parts of the world but is grossly the same for AMH and AMHRII mutations, 65 and 57%, respectively (Fig. 4).

Two reports [Sloan and Walsh, 1976; Naguib et al., 1989] raised the possibility that PMDS may sometimes be transmitted as an X-linked condition, but they are difficult to interpret in highly inbred communities [Naguib et al., 1989], since many family members might carry the pathological allele. Heterozygous subjects with 1 normal allele are clinically inconspicuous. There is no phenotype in females. Homozygous sisters and, in one instance, the homozygous mother of a PMDS propositus (H066), are normal and fertile. Amh-null female mice experience early depletion of their follicular pool [Durlinger et al., 1999]. Possibly, women homozygous for AMH or AMHRII mutations will undergo premature menopause, but this cannot be verified at the present time.

Treatment

The treatment aims at the prevention of the 2 main complications of PMDS: infertility and cancer. Paradoxically, as mentioned above, the best chances of fertility...
are sustained by patients having escaped treatment altogether, but this is no longer likely because cryptorchidism and inguinal hernia are now surgically corrected in early childhood. The surgeon should bear in mind that the male excretory ducts are in close apposition to or even enclosed in the walls of the müllerian derivatives, thus any attempt to remove the müllerian organs in toto will automatically damage the vas deferens or the deferential artery. Why then not leave them in place? For several reasons: they may, although rarely, undergo malignant degeneration (see above) or cause discomfort or hematuria in the event of estrogen excess [Gricourt et al., 2010]. However, the main reason for hysterectomy is mechanical. When both testes are in an abdominal position, the uterus blocks testicular descent and orchidopexy is impossible. To overcome this difficulty, the fun- dus of the uterus can be split in the midline [Brandli et al., 2005; Manjunath et al., 2010] and the uterine walls can be carefully dissected to free the vas. The magnification provided by laparoscopy is helpful in this respect [Farikullah et al., 2012]. Alternatively, the uterus can be stripped of its mucosal lining to reduce the risk of malignant degeneration [Manjunath et al., 2010]. Abnormalities of male excretory ducts, whether congenital or iatrogenic, are treatable by testicular sperm extraction followed by intracytoplasmic sperm injection if fertility is desired. This procedure was successful in patient H071 (online suppl. Table 1).

The uterus is not the only obstacle to testicular descent. When testes are in a high abdominal position, the cord is often much too short to allow placement of the testis in the scrotum. The internal spermatic artery must then be divided, and testicular viability becomes dependent on the deferential artery. To minimize the risk to this vessel, pedicles of myometrium should be left adhering to the vas, and the fimbrae of the Fallopian tube should not be dissected from the testis [Vandersteen et al., 1997]. As an alternative to the Fowler-Stephens procedure, microvascular autotransplantation of the testis has been successfully performed [Brandli et al., 2005]. Most of these procedures can be carried out by laparoscopy [Bowen et al., 2016] or robotic surgery [Smith-Harrison et al., 2015].

Testicular biopsy is unnecessary provided the diagnosis of PMDS is not in doubt. In children, testicular morphology is normal [Loeff et al., 1994; van der Zwan et al., 2012], and this is also our experience. In older patients, testes are often hypoplastic with tubular fibrosis, thickened basal membrane, and no spermatogenesis present [Mouli et al., 1988]. If the testes cannot be brought down, orchiectomy is recommended to avoid future malignant degeneration but should be considered only as a last re-

Molecular Studies

In our experience, mutations of the AMH or the AMHRII gene are responsible for 88% of PMDS cases. The others have no identified molecular cause and are presently labelled idiopathic.

AMH Gene Mutations

AMH, a glycoprotein dimer belonging to the TGF-β family [Cate et al., 1986] is coded by a 5-exon gene which is 2.8 kb long and located on the short arm of chromosome 19 (p13.3) [Cohen-Haguenauer et al., 1987]. AMH, like other members of the family, is translated as a dimeric precursor comprising 2 polypeptide chains, each containing a large N-terminal pro region and a much smaller C-terminal mature domain, which shows homology with the other members of the family and carries the bioactivity of the molecule. Cleavage at arginine 451 yields 110 kDa N-terminal and 25 kDa C-terminal dimers which remain associated in a bioactive noncovalent complex [Pepinsky et al., 1988]. While cleavage is obligatory, disassociation of the 2 fragments is not required for binding to the receptor and subsequent biological activity [di Clemente et al., 2010] (Fig. 5). In the absence of the N-terminal fragment, the C-terminus cannot fold properly and is rapidly degraded prior to secretion, explaining the pathogenicity of N-terminal mutations.

Patients with AMH mutations are described in online suppl. Table 1. The first one, a stop mutation in exon 5 affecting the N-terminal domain, was detected in 1989 in 3 brothers belonging to a Moroccan family [Knebelmann et al., 1990]. Since then, we ourselves have identified 68 families with AMH mutations, and 12 have been described by other groups [Mazen et al., 2011; Nishi et al., 2012; van der Zwan et al., 2012; Morikawa et al., 2014; Nalbantoglu et al., 2015; Mazen et al., 2016]. A total of 65% of mutations are homozygous, reflecting a high rate of inbreeding in some parts of the world (Fig. 4). Given the high value placed on fertility in the culture of these populations, we recommend genetic testing in the relatives of PMDS patients with identified AMH or AMHRII mutations and their prospective partners, if marriage is contemplated. In 6 instances, only 1 abnormal allele could be identified. The most likely explanation is that the other escaped detection, perhaps because it is located in the center of an intron or for technical reasons. The AMH gene is difficult to sequence because it is very rich in guanine and cytosine bases.

Altogether, a total of 64 different pathogenic AMH alleles have been identified in 80 families: 37 missense, 10 stop, and 1 non-stop p.(*56I>Cysext*?), 9 deletions (including 1 insertion/deletion [H031]), 2 insertions, and 5 splicing mutations (online suppl. Fig. 1). Mutations occur along the whole length of the gene, though exon 4 is very rarely involved (Fig. 6A), and exons 1 and 2 are proportionally the most affected. In exon 5, the bases coding the biologically active C-terminus are hit at nearly 3 times the rate of the N-terminal ones. There are no significant “hotspots,” though many mutations are recurrent (Fig. 7A). Six mutations have been found in 4 or more families, while 13 others have occurred less frequently. Intron 2 is the target of 2 distinct recurrent splicing mutations, the first affecting the donor and the second the acceptor site. The latter, a A>G change at the penultimate base of the intron 2, was found in 3 unrelated Brazilian patients and may represent a founder effect [Nishi et al., 2012]. Similarly, the 4 families affected by mutation c.301G>A, p.(Gly101Arg) all originate from the Middle East or Pakistan [Abduljabbar et al., 2012]. The 5 families affected by mutation c.500A>G, p.(Tyr167Cys) are Northern European.

Belville et al. [2004] have studied the biosynthesis and secretion of 7 mutant AMH proteins. Those lacking a C-terminal domain are secreted more rapidly, whereas single amino acid changes in either the C- and the N-terminal domain have significant effects upon protein stability and folding. Addition or elimination of cysteines is particularly damaging.

Mutations deserving a special mention are shown in Figure 7A.

A deletion within the promoter, 225 bp upstream from the initiating ATG, results in the loss of the 4th base of the SF1 response element, TCAAGGACAG [Valeri et al., 2016]. The AMH promoter carries 2 SF1 response elements, a proximal one at –102 from the ATG [Shen et al., 1994] and a distal one at –228 [Watanabe et al., 2000]. Both sites are involved in the upregulation of AMH gene expression in cultured Sertoli cells [Shen et al., 1994; Lasala et al., 2011]. In transgenic mice, Arango et al. [1999] found that inactivation of the proximal site did not prevent müllerian duct regression. The persistence of mü-
Fig. 6. Schematic representation of the \textit{AMH} (A) and the \textit{AMHRII} gene (B). The number of total and different mutations and the number of mutations per 100 bp are shown for each exon. N-terminal, coding the pro region of the AMH protein; C-terminal, coding the mature, biologically active region of the protein. Note that the rate of mutations for 100 base pairs is much higher for the C-terminus.

Fig. 7. Recurrent mutations (red) and those of particular interest (black) detected in the \textit{AMH} gene (A) and the \textit{AMHRII} gene (B). \(n \), number of affected families; missense mutation, yellow box; nonsense mutation, white box; deletion, green box; insertion, blue box; splicing mutation, star.
lerian derivatives in our patient shows that the distal SF1 response element is absolutely required for significant human AMH expression.

Another mutation, c.3G>T, observed in a Moroccan patient (H002), changes the translation initiation codon ATG for methionine into ATT, coding for isoleucine. The molecular effect of the mutation is not known. Kozak [2002] has shown that proximity to the 5′ end plays a dominant role in identifying the start codon. If the canonical start site is destroyed, translation may initiate at the next available ATG. However, in the AMH protein the next ATG at position 191 is not in frame and the next in-frame ATG is far downstream in exon 4. It is highly unlikely that either could allow translation of a functional protein [Mentrup et al., 2011]. Most start codon mutations result in complete absence of the affected protein [Sargiannidou et al., 2015; Jinda et al., 2016].

The nonstop mutation c.1683A>T changes the stop codon TGA into TGT in the cysteine codon. No downstream in-frame stop codon is present in the 3′ untranslated region before the polyadenylation site, suggesting that the translated protein must be significantly extended. However, such extra-large proteins are usually not produced because of ribosome stalling at the 3′ end of the mutated mRNA, which blocks translation before the full-length polypeptide can be synthesized [Hamby et al., 2011]. A recurrent mutation c.35T>G [Imbeaud et al., 1994] leads to the replacement of valine by glycine at position 12, p.(Val12Gly), in the midst of the signal sequence.

Patient H075 carries 2 homozygous mutations, p.(Ala314Gly) and p.(Gly533Val), none of which correspond to recognized polymorphisms. His serum AMH level was very low. Gly533 is located in the β6 strand of the mature domain (Fig. 8). The β sheet structure would probably not be disrupted by a valine substitution; in fact quite the opposite could occur. Glycine is an intrinsically destabilizing residue in β sheets [Merkel and Regan, 1998], and its presence in the β strands of several natural proteins might be due to its ability to inhibit aggregation and formation of amyloid fibrils [Parrini et al., 2005]. Thus the Gly533Val mutant protein might be less stable and prone to aggregation. The fact that Gly533 is conserved in AMH sequences across species provides support for this hypothesis. The role, if any, of the Ala314Gly mutation located in the β7 strand of the pro region is not clear. The replacement of Ala314, which is strongly conserved across species, by glycine could destabilize the β sheet and thereby add to the instability of the double mutant protein, but no conclusions can be drawn in the absence of experimental data. By comparison to a molecular model of the BMP9 noncovalent complex [Mi et al., 2015], it can be inferred that the β7 strand in the pro region is too far away from the cleavage site at Arg451 to interfere with processing.

The impact of splicing mutations cannot be assessed in the absence of mRNA. In the male, AMH is expressed nearly exclusively in testicular Sertoli cells. When tissues normally expressing a protein of interest are not available, “illegitimate” transcription may be successful [Chelly et al., 1989]. In patient H044, we were able to obtain AMH mRNA by amplifying a discrete RT-PCR product obtained from uterine mRNA primed for reverse transcription. Sequencing of AMH mRNA revealed retention of the first 46 bases of intron 1 and use of a downstream cryptic donor site at position +47 in intron 2 [Gricourt et al., 2010].

The polymorphism c.146T>G, p.(Ile49Ser) seen in 21% of normal subjects is identical to the sequence of bovine AMH. For this reason, it is not expected to affect AMH bioactivity. In normal women, it is associated with higher levels of estradiol at the follicular phase of the menstrual cycle, suggesting a role in ovarian sensitivity to FSH [Kevenaar et al., 2007a].

AMH Receptor Mutations

Like other member of the TGF-β family, AMH signals through 2 membrane-bound serine/threonine kinase receptors type I and type II. Paradoxically, the type II receptor, AMHRII, is the primary one and is AMH spe-
cific. AMHRII binds AMH after the latter has undergone proteolytic cleavage at Arg451, and then activates a type I receptor, ALK 2, 3, or 6. This leads to the phosphorylation of R-Smad proteins 1, 5, or 8, its interaction with Smad4, and the translocation of the R-Smad/Smad4 complex to the nucleus where it promotes or more likely represses the transcription of target genes (Fig. 9). AMH shares its type I receptors and its R-Smad effectors with the bone morphogenetic proteins (BMPs) [reviewed in Orvis et al., 2008]. Since the BMP pathway is required for early embryonic development, it cannot be involved in isolated PMDS, and so the only possible culprit is the specific AMH type II receptor, AMHRII. AMHRII is a 573 amino acid membrane protein containing an N-terminal extracellular domain that binds AMH, a single transmembrane domain, and an intracellular domain with serine/threonine kinase activity. The AMHRII gene, located at 12q13 [Imbeaud et al., 1995b] contains 11 exons spread over 8 kb. The first 3 exons encode the extracellular domain which binds cleaved AMH [di Clemente et al., 2010], the exon 4 encodes the transmembrane domain, and the last 7 exons encode the catalytic intracellular serine/threonine domain (Fig. 6B). The level of bioactive AMH in biological fluids can be assessed by monitoring their capacity to bind to AMHRII [Pierre et al., 2016].

There is no phenotypic difference between patients with either AMH or AMHRII mutations (Fig. 2), confirming the monogamic relationship between AMH and its type II receptor [Mishina et al., 1999]. Patients with AMHRII mutations are described in online suppl. Table 2. The first one was described in 1995 [Imbeaud et al., 1995b]. Since then a total of 75 families with PMDS due to AMHRII mutations have been identified, 68 by our group. The other cases were reported in the USA [Hoshiyaya et al., 2003], Brazil [Nishi et al., 2012], Egypt [Mazen et al., 2016], Portugal [Rosal-Gonçalves et al., 2010], Turkey [Korkmaz et al., 2017], and Israel [Elias- Assad et al.,

Fig. 9. Cross-talk between AMH and Wnt/β-catenin pathways. Upon AMH binding to AMHRII, type I receptors ALK2 and ALK3 are recruited, resulting in the activation of SMAD 1/5/8, which translocate to the nucleus in concert with Smad4 to regulate the expression of target genes, including Wnt4 or 5A and others. These factors stabilize β-catenin which associates with T-cell factor (TCF)/lymphocyte enhancer factor 1 (LEF1) to activate transcription of gene products involved in regression of the müllerian duct epithelium (e.g., apoptosis induced by caspase-3 cleavage).
A total of 58 different alleles have been identified: 35 missense, 11 stop, 8 deletions, and 4 splicing defects (online suppl. Fig. 2). All 11 exons are affected (Fig. 6B). Two different mutations of the initiation codon were observed (R001 and R002) (Fig. 7B) with unknown consequences. The next methionine is at position 76, probably too far downstream to initiate translation (see section on AMH mutations). Patient R024 was initially considered to be homozygous for c.532C>T, p.(Arg178*). However, while the father was heterozygous as expected, surprisingly, only the normal allele could be detected in the mother. To explain this paradox, we hypothesized that she was heterozygous for a large deletion of all or part of the AMHR II gene. This hypothesis has been confirmed [Lucie Tosca and Gérard Tachdjian, pers. commun.], and studies are in progress to determine the extent of the deletion.

Ten recurrent mutations have been identified (Fig. 7B). The most frequent, a deletion of 27 bp in exon 10, c.1332_1358del, p.(Gly445-Leu453del) according to the present official nomenclature, was initially considered to result in p.(Leu444_Glu452del) [Imbeaud et al., 1996]. It has been observed in 30 patients, 67% of whom are Northern Europeans, a proportion significantly different from the 36% of that origin in the 75 patients with AMHR II mutation (p < 0.05), suggesting a founder effect. Twenty out of 27 Northern European patients carry the deletion, compared to only 1 out of 11 Southern Europeans. The deletion can be recognized by PCR (Fig. 10). When a receptor mutation is suspected, we recommend performing this procedure as a first line investigation. Other recurrent mutations are much less prevalent. The c.1219C>T mutation, resulting in the change of arginine at position 407 to a stop codon, has been observed in 6 families, 4 from Mediterranean countries, 1 from Saudi Arabia, and 1 Brazilian patient of undisclosed ancestry. The number of families affected by the other recurrent mutations is too small to allow for a geographical analysis.

Belville et al. [2009] have studied the impact of receptor mutations upon expression, stability, and secretion. Interestingly, in contrast to other receptors of the TGFβ family, mutations of the extracellular domain which terminate just upstream of the transmembrane domain are not secreted, unless the endogenous signal sequence is replaced with that of the TGFβ receptor type II, indicating that the AMHR II signal sequence is defective. This likens AMHR II to a type III membrane protein, whose transmembrane domain acts like a signal anchor directing the N-terminal end of the protein to the outside of the cell [Goder and Spiess, 2001]. Like similar receptors of the TGFβ family, these receptors are dominant negative when overexpressed, but in vivo only siblings carrying the mutation on both alleles are affected by PMDS, presumably because the mutant and wild-type allele are expressed at a 1:1 ratio [Messika-Zeitoun et al., 2001].

Missense mutations in the extracellular domain cannot be analyzed reliably because of low sequence identity (<20%) between AMHR II and the receptor templates used to construct the 3-dimensional model [Belville et al., 2009]. In the intracellular domain, 2 AMHR II mutants, c.596delA and the frequent allele c.1332_1358del, p.(Gly445_Leu453del), lack all of the kinase domain or contain a critical deletion. The p.(Gly445-Leu453del) mutation results in a deletion of 9 amino acids that constitute part of the αG helix and the loop that precedes it (Fig. 11A). In eukaryotic protein kinases, helices αG, αH, and αI have coevolved together with the activation seg-

![Fig. 10. Detection of the 27-bp deletion in exon 10 by PCR. SM, DNA size marker; C, control; F, father; M, mother; 1–3, phenotypically normal siblings; 4, PMDS propositus. The figure shows the segregation of a normal allele (382 bp) and a smaller, deleted one (355 bp) which migrates faster. Brother 2 has 2 normal alleles represented by a single, slow migrating band. Sister 1 and the propositus are homozygous for the deleted allele, represented by a single, fast migrating band. Consanguineous parents and brother 3 are heterozygous for the mutations, as shown by the presence of both the slow and fast migrating bands. Reprinted with permission from Josso et al. [2013].]
Persistent Müllerian Duct Syndrome: An Update

Fig. 11. Molecular models of the kinase domain of AMHRRII showing the location of the amino acids affected by the p.Gly445-Leu453del mutation. A Close-up view showing the amino acids affected by the deletion mutation as sticks. The residues are located in the αG helix and preceding loop. B View of the entire kinase domain showing the proximity of the αG helix to the activation segment (shown in magenta), 2 conserved features within eukaryotic protein kinases that have coevolved as part of a regulatory mechanism.

not observed (Fig. 2), and the rate of consanguinity is low. Screening for other genetic alterations is planned in the few cases with sufficient DNA left for study.

Multiple genetic pathways implicated in müllerian development have been invoked [Mullen and Behringer, 2014], namely the Wnt pathway. Wnt4 is required for müllerian duct development in both sexes [Vainio et al., 1999]; Wnt7 triggers the expression of AMHRII in the müllerian duct mesenchyme, and in its absence müllerian ducts do not regress in the male [Parr and McMahon, 1998]. AMH signaling induces the translocation of β-catenin and the accumulation of lymphocyte enhancer factor 1 (LEF1) in the nucleus of mesenchymal cells [Allard et al., 2000]. Normal AMH regression does not occur in male mice in which β-catenin has been inactivated [Kobayashi et al., 2011]. The postulated mechanisms of interaction between the Wnt and AMH pathway are shown in Figure 9. Modern methods of genetic investigation [Bashamboo et al., 2010; Eggers et al., 2016] applied to idiopathic PMDS will probably produce unexpected results. In the meantime, identified mutations of the AMH and AMHRII genes in PMDS are invaluable probes for understanding the biosynthesis and mechanism of action of a gonadal hormone, which in addition to playing a key role in male sex differentiation, is gaining recognition as an important factor in female reproduction.

Acknowledgments

We wish to thank all the physicians who referred their PMDS patients to us for molecular analysis and regret that in the interest of space it is not possible to cite them individually. All families gave informed consent for the molecular investigation.
References

Persistent Müllerian Duct Syndrome: An Update

Persistent Müllerian Duct Syndrome: An Update

DOI: 10.1159/000475516

