The Lung in Hereditary Hemorrhagic Telangiectasia

Sophie Dupuis-Girod, MD, PhD
Service de génétique et centre de référence national pour la maladie de Rendu-Osler
Hôpital Femme-Mère-Enfants
FR–69677 Bron (France)
E-Mail sophie.dupuis-girod@chu-lyon.fr

© 2017 S. Karger AG, Basel
www.karger.com/res

Introduction

Hereditary hemorrhagic telangiectasia (HHT; Online Mendelian Inheritance in Man® #187300) is a dominantly inherited genetic vascular disorder with an estimated prevalence of 1 in 6,000, characterized by recurrent epistaxis, cutaneous telangiectasia, and arteriovenous malformations (AVMs) that affect many organs including the lungs, gastrointestinal tract, liver, and brain. Diagnosis is based on the Curaçao criteria, and is considered definite if at least 3 of the 4 following criteria are fulfilled: (1) spontaneous and recurrent epistaxis, (2) telangiectasia, (3) a family history, and (4) pulmonary, liver, cerebral, spinal, or gastrointestinal AVMs. The focus of this review is on delineating how HHT affects the lung.

Keywords
Hereditary hemorrhagic telangiectasia · Pulmonary arteriovenous malformations · Pulmonary hypertension · Anemia · Rare vascular disease
receptor, and SMAD4 is the common partner for canonical (SMAD-based) signaling [5]. While the exact pathogenic mechanisms are yet to be determined, vascular abnormalities in HHT are thought to arise due to resultant imbalances in the response to angiogenic factors such as vascular endothelial growth factor [6], defective vascular repair [7], and/or modified vessel maturation [8]. Recently, heterozygous missense substitutions in the GDF2 gene, which encodes bone morphogenetic protein 9, have been reported in individuals with some cutaneous vascular lesions similar to those seen in HHT [9, 10], although the pathogenicity of the gene variants remains uncertain.

Vascular lesions similar to those present in HHT (such as skin telangiectasia and certain high-flow AVMs) may also be found in other hereditary vasculopathies due to RASA1 and TIE2, which appear to mediate different signaling pathways [11, 12].

Pathogenic ENG, ACVRL1, and SMAD4 sequence variants can generate the full spectrum of vascular lesions in HHT, including pulmonary, cerebral, hepatic, and spinal involvement, though ENG mutations are associated with an increased risk of pulmonary AVMs (PAVMs) and cerebral AVMs (~3- to 6-fold), whereas ACVRL1 variants more frequently cause hepatic AVMs (~3- to 6-fold) [13–15]. The vascular abnormalities have been reproduced in animal models by heterozygous inactivation of the ENG or ACVRL1 gene [16, 17].

The focus of this review is on delineating how HHT affects the lung. In brief:

- PAVMs affect ~50% of all HHT patients [18]; PAVMs result in an anatomical right-to-left shunt, cause hypoxemia, and place patients at high risk of paradoxical embolic strokes and cerebral abscesses [19], but their importance remains underrecognized [20].
- ~20% of HHT patients with no evidence of PAVMs on thoracic CT scans also display evidence of intrapulmonary right-to-left shunting by contrast echocardiography (CE) [21], and there is limited appreciation that

Table 1. Manifestations of HHT and complications

<table>
<thead>
<tr>
<th>Manifestation/lesion</th>
<th>Prevalence</th>
<th>Diagnosis</th>
<th>Complication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epistaxis/telangiectasia of the nasal mucosa</td>
<td>>90%</td>
<td>Epistaxis beginning in childhood, often at the beginning of HHT</td>
<td>Anemia, Acute hemorrhage</td>
</tr>
<tr>
<td>Mucocutaneous telangiectasia (lips, oral cavity, tongue, and fingertips)</td>
<td>80%</td>
<td>Evident</td>
<td>Cosmetic hemorrhage</td>
</tr>
<tr>
<td>Telangiectasia of the gastrointestinal tract</td>
<td>15–30%</td>
<td>Endoscopy (upper/lower)</td>
<td>Anemia, Gastrointestinal hemorrhage</td>
</tr>
<tr>
<td>Pulmonary AVMs</td>
<td>50%</td>
<td>CT scan, Transthoracic contrast echocardiography</td>
<td>Most often asymptomatic, Right-to-left shunt: stroke, brain abscess, hypoxemia +/- dyspnea; migraine, Hemorrhage: hemoptyisis, hemothorax</td>
</tr>
<tr>
<td>Hepatic vascular malformations</td>
<td>30–70%</td>
<td>Doppler US CT scan</td>
<td>Most often asymptomatic, Hepatic AVMs: high cardiac output +/- failure, postcapillary pulmonary hypertension, Hepatoportal VMs: portal hypertension, Portovenous VMs: biliary ischemia</td>
</tr>
<tr>
<td>Cerebral AVMs</td>
<td>10–20%</td>
<td>MRI Angiography</td>
<td>Most often asymptomatic, Hemorrhage depends on type, Headache, Epilepsy</td>
</tr>
<tr>
<td>Spinal AVMs</td>
<td><1%</td>
<td>Spinal MRI</td>
<td>Hemorrhage, Paraplegia (acute, subacute, or progressive)</td>
</tr>
</tbody>
</table>

HHT, hereditary hemorrhagic telangiectasia; AVMs, arteriovenous malformations.
PULMONARY ARTERIOVENOUS MALFORMATIONS

Definition, Prevalence, and Anatomical Considerations

PAVMs are structurally abnormal vessels (Fig. 1) that provide direct capillary-free communication between the pulmonary and systemic circulations and result in an anatomical right-to-left shunt. They may occur sporadically, but more usually are associated with HHT. The major consequences of PAVMs are impairment of gas exchange (resulting in hypoxemia) and paradoxical emboli (Fig. 2). In less than 2% of untreated cases, the PAVM may involve a systemic artery rather than a pulmonary artery [30]. PAVMs vascularized by more than one branch of a pulmonary artery or drained by multiple segmental pulmonary veins are labelled “complex PAVMs.”

PAVMs comprise an aneurismal or serpiginous sac with one or more afferent feeding arteries and one or more efferent draining veins. Based on cross-sectional and angiographic imaging, PAVMs are classified as single (only one macroscopic PAVM) or multiple (several lesions distributed in different lobes or lung segments), noting that each PAVM can itself be complex in structure. The term “diffuse” is used to describe the rare situation of PAVMs, usually small, affecting multiple segmental branches of one lobe or all branches of one segment [31], raising specific challenges to treatment. The severity of right-to-left shunting is defined as the proportion of cardiac output passing through the PAVMs, and may be massive (>40%) in patients with large single PAVMs, as well as in patients with more diffuse, smaller PAVMs.

In HHT patients, PAVMs predominate in the lower lobes (60–95%) and are multiple in at least half of all HHT cases [30] (Fig. 2). In published series, PAVMs do not appear to directly influence spirometric values [32, 33].

The prevalence of PAVMs differs according to HHT genotype, being higher in HHT1 due to ENG (up to 58%) than in HHT2 due to ACVRL1 (18%) (p < 0.001) [18–21]. PAVMs may be present from birth and have usually completed development by adult life, although they can enlarge later in life – for example, during pregnancy or following other alterations in pulmonary hemodynamics.

Clinical Manifestations and Complications

Most patients with PAVMs that place them at risk of preventable strokes and brain abscesses are unaware that they have a problem within their lungs. PAVMs continue...
to be more commonly diagnosed by incidental imaging, systematic screening, or investigations after neurological complications than due to respiratory symptoms [18, 34, 35]. As HHT patients should undergo screening for PAVMs, this should be the main circumstance for the detection of PAVMs.

Paradoxical Emboli

The major risks of PAVM are neurological due to compromised pulmonary capillary bed filtration, and include cerebral abscess, ischemic stroke, transient ischaemic attack, and asymptomatic cerebral infarction. Such complications frequently reveal the diagnosis of PAVMs, and even of HHT itself. Cerebral abscesses commonly occur in asymptomatic individuals without a prior diagnosis of PAVM or HHT [34, 35], and leave approximately 50% of survivors with residual life-changing neurological deficits [35]. Cerebral abscesses are estimated to affect 5–19% of patients with PAVMs at a median age of 53 years [18, 34–39]. This translates to an increased rate of 155/100,000/year among HHT patients, compared to 0.4/100,000/year among the general population [39]. Cerebral abscesses are frequently due to multiple organisms, may follow dental or other interventional procedures, and occur in immunocompetent patients at a median age of 33 years [18].

Crucially, the cerebral abscess data dispel previously proposed myths about the importance of respiratory symptoms, hypoxemia, or feeding artery diameters in establishing which PAVMs require treatment: not only do cerebral abscesses commonly occur in patients with no respiratory symptoms and normal SaO\textsubscript{2}, but also, across two separate series, in 14/65 (21.5%) of the cases, all PAVM feeding arteries had a diameter of 1–3 mm, i.e., at or below the limit of what is commonly considered treatable [34, 35]. That said, in multivariate analyses of a recent series of 445 consecutive patients with PAVMs, cerebral abscesses were more common in patients with lower SaO\textsubscript{2}, with the risk of cerebral abscess increasing by 10.47% (95% CI: 4.18–16.36) for every 1% fall in SaO\textsubscript{2} [35]. Thus, overall, the risk of cerebral abscess is increased whatever the size of the PAVM or the feeding artery in individuals with more severe right-to-left shunting. In multivariate analyses, cerebral abscess was also associated with indices of iron loading (higher transferrin iron saturation index or intravenous iron use for anemia), male gender, and venous thromboemboli [35]. Other severe infections may occur as a result of PAVMs [38], including...
abscesses in other organs, the spinal cord, or soft tissues, as well as meningitis, septicemia, endocarditis, and bacterial spondylodiscitis.

PAVMs are also strongly associated with an enhanced risk of cerebral ischemia and infarction, again attributable to paradoxical emboli. The rate of a clinical ischemic stroke (duration >24 h) has been reported to lie between 9 and 18% [18, 34, 40–42] – at 11.3% when adjusting for ascertainment bias [34] – at a median age of 53 years, and is reduced after embolization of PAVMs [34]. Transient cerebral ischemic attacks affect 6–37% of PAVM patients [18, 43]. The burden of asymptomatic cerebral infarction is greater still: in one series, 34/67 (51%) of the patients with PAVMs had CT evidence of cerebral infarcts at a median age of 41 years [44], and in a more recent series of MRIs performed for cerebral AVM screening at a median age of 43 years, “incidental” cerebral ischemic changes were reported in 15/21 (68.2%) of the HHT patients with PAVMs (PAVM age-adjusted odds ratio 61.1 [95% CI: 4.3, 874, p = 0.002]) [45]. Ischemic strokes commonly occur in previously asymptomatic individuals without a prior diagnosis of PAVM or HHT [34, 40]. Recent studies have highlighted that for a patient with a PAVM, the strongest stroke risk factors are low levels of serum iron [40] (which is associated with exuberant platelet aggregation to 5-hydroxytryptamine [40, 46]) and high levels of serum fibrinogen [40], which is the predominant circulating plasma protein for platelet adhesion [47]. These emphasize the importance of antiplatelet therapies as utilized in conventional ischemic stroke management. Anticoagulants are only recommended if there is separate evidence of deep venous thrombosis or pulmonary emboli, which are rare in PAVM-ischemic stroke patients [40, 48].

Respiratory Manifestations

The most striking clinical finding in this patient group is the presence of asymptomatic hypoxemia [49]: significantly hypoxemic patients with $\text{SaO}_2 <85\%$ are often able to pursue sporting activities to a very high level [50], emphasizing the powerful hematological [49, 51] and hemodynamic [52, 53] compensatory responses that can be employed. Crucially, these compensatory responses are then lost after treatment of PAVMs, and exercise capacity/oxygen delivery usually returns to pretreatment levels [49, 51, 53]. There is no clear relationship between the severity of right-to-left shunting and dyspnea; instead dyspnea appears to be more common in patients with airflow obstruction related to another condition, higher pulmonary artery pressures, anemia, or other indices of ill health [49, 52].

Cyanosis and clubbing may be present in hypoxemic patients with PAVMs, but cyanosis is masked by anemia, and clubbing severity does not seem to be predictable unless right-to-left shunting is severe. Patients with PAVMs occasionally exhibit orthodeoxia [54], attributable to the basal predominance of PAVMs, but this is usually asymptomatic; platypnea (dyspnea on assuming the upright position) is very rare [54].

Other respiratory symptoms due to untreated PAVMs include hemoptysis and hemothorax resulting from intrabronchial or intrapleural rupture of PAVMs, respectively [55]. These are rare, reflecting the low pressures of the pulmonary circulation, but they are more common (1) in pregnancy (see below) [56, 57], (2) if PAVMs acquire a systemic arterial feeder after PAVM embolization [58], or (3) in the setting of PH [31, 59, 60]. Emergency PAVM treatment by embolization or surgery is effective.

Chest pain is rarely attributable to untreated PAVMs. The apparent association between chest pain and PAVMs in the literature most likely reflects incidental occurrences that precipitated diagnostic imaging.

The presence of PAVMs is also associated with a significant increase in the prevalence of migraine. The risk is approximately doubled if HHT patients have PAVMs, and the migraines often improve after PAVM treatment [36, 61–64]. Similarly, the prevalence of PAVM is higher in patients with migraines among the HHT population (50 vs. 36%) [64]. Recent data suggest that the pathophysiological mechanisms may again include paradoxical embolism of particulate matter [65].

Pregnancy and PAVMs

During pregnancy, the risk of PAVM hemorrhage and of maternal death are each on the order of 1% (among 484 pregnancies, 1.0% [95% CI: 0.1–1.9] resulting in a major PAVM bleed and 1.0% [0.13–1.9] resulting in maternal death) [56]. Both hemoptysis and hemothorax are described [56, 57]. To reduce maternal and fetal complications related to PAVMs during pregnancy, systematic screening and treatment of PAVMs are recommended prior to pregnancy. PAVMs often increase in size and number during pregnancy, likely due to the increased blood volume and cardiac output. In pregnancy, there are also enhanced risks of pulmonary emboli and of myocardial infarction with normal coronary arteries [56]. Pregnant HHT patients with PAVMs should be offered close follow-up throughout pregnancy: the arterial oxygen content (CaO_2) appears to be a more relevant and helpful index than SaO_2, which may be misleadingly high [51]. If necessary, transcatheter embolotherapy of maternal pul-
monary AVMs can be performed [66], although in our practice this is restricted to women who are experiencing hemoptysis.

Diagnosis of PAVM

Thoracic CT scans using helical multidetectors are the gold standard for the diagnosis of PAVMs, with the ability to detect anatomical PAVMs far below the technical limitations of treatment. Expertise is wide-spread, though diagnostic confusion can result: distinguishing features of possible “PAVM mimics” such as a pulmonary varix, bronchocles, or pulmonary malinosculations are presented elsewhere [67]. It is important that CT use is restricted: in a single-center study of 246 patients with PAVMs (mean age: 53 years), the mean cumulative effective dose over an 11-year period was 51.7 mSv; CT scans repeated according to recommended protocols [68] accounted for 46% of the cumulative effective dose, compared with 51% from interventional procedures [69]. Due to potential radiation exposure, recent consensus statements emphasize that CT scans should not be repeated unless there is a new clinical indication [48]. CT should be performed without contrast injection for screening, with injection only if required for confirmation of the diagnosis or pretreatment. Similarly, pulmonary angiography should not be performed as a diagnostic test, and, in experienced centers, is usually only performed at the time of embolization after PAVMs have been anatomically defined by a thoracic CT scan.

Screening for PAVMs in the HHT Population

Either a negative contrast echocardiogram performed by experienced hands or a negative thoracic CT scan (with or without contrast) excludes clinically significant PAVMs. Transthoracic CE (TTCE) has been recommended as the initial screening test for PAVMs [68] due to its high sensitivity [70] and low risk [71]. TTCE relies on the normal 100% first-pass clearance of a microbubble on its passage through the alveolar capillaries as the gas diffuses rapidly out of the microbubble into the alveolus down the concentration gradient. TTCE is performed by injecting 4–5 mL of agitated modified fluid gelatin or isotonic saline solution with 0.5 mL room air into a peripheral vein, while simultaneously imaging the atria with 2-D echocardiography. Microbubbles seen in the left heart indicate an intracardiac or intrapulmonary right-to-left shunt. A low-dose chest X-ray is often performed prior to TTCE to detect large PAVMs and obviate the need for microbubble injection in patients with high-flow right-to-left shunting. If negative after assessment by expert hands, no further imaging is required to exclude PAVMs, and the study should not need to be repeated. Although TTCE is the recommended screening method in international guidelines, some HHT centers prefer to perform a single thoracic CT to screen for PAVMs in HHT patients, especially because less experienced sonographers in wider respiratory unit practice may overlook relatively small numbers of bubbles. Even using this approach, echocardiography (not TTCE) may be useful to ensure that pulmonary arterial pressures, cardiac output, and the right heart cavities are normal. The choice between using CT and using TTCE to screen for PAVM may therefore depend on physicians’ and patients’ preferences, patients’ age and gender, and resources.

The key interpretive points for TTCE include:

- TTCE is considered positive for intrapulmonary right-to-left shunting if microbubbles appear in the left atrium after a delay (usually 3–4 cardiac cycles) or ramp in intensity (in contrast to intracardiac shunts); the intrapulmonary shunt origin is certain if the bubble density is greater in the left heart than in the right, often requiring 30–60 s of recording [72].
- PAVMs are one cause of intrapulmonary right-to-left shunting; intrapulmonary shunting demonstrable by TTCE is also evident in ∼10% of the general population at rest, and the majority of healthy individuals on exercise, and/or after adrenergic stimuli [22, 73, 74].
- A positive intrapulmonary shunt study is also more likely after injury to the delicate pulmonary capillaries, for example, following a second injection of contrast medium [72].
- TTCE is usually positive in HHT1 patients (85%) [21], and often positive in HHT2 patients (35%) [21]; semi-quantification of the shunt may help distinguish from physiological shunting and enhance the positive predictive value for a PAVM amenable to treatment [75] or complication risk [76].
- In the absence of PAVMs visible on CT scan, a contrast echocardiogram demonstrating an intrapulmonary shunt does not appear to be associated with an enhanced neurological risk in HHT patients [76]; TTCE is therefore not indicated when the presence of a PAVM has already been established by CT or during follow-up of patients with treated PAVMs; there are also reassuring data for the general population indicating that very few exercise-induced arterialized gas bubbles reach the cerebral vasculature [77], although it is not clear that the same applies to nongaseous paradoxical emboli.
Different algorithms have been proposed for the screening and follow-up of adult patients with HHT according to the degree of local expertise with CE (Fig. 3).

Interventional Treatment of PAVMs

Treatment of PAVMs in HHT aims at preventing severe complications, especially cerebral abscess, ischemic stroke, and hemorrhage. Interventional treatment is thus warranted in all patients with PAVMs of a size amenable to treatment, irrespective of symptoms [49, 61, 78–80]. PAVM treatment also reduces migraines [61, 81], HHT nosebleeds [82], polycythemia [49, 51], and hemodynamic sequelae of PAVMs [52, 53]. Patients should not undergo embolization expecting improved exercise tolerance, although this may be observed.

PAVM Embolization

Transcatheter vaso-occlusion (embolization) of PAVMs previously used balloons and/or detachable coils with thrombogenic fibers to accelerate platelet thrombus formation [83]. Increasingly, Amplatzer vascular plugs are recommended, as these have greater efficacy and appear to have a lower risk of recanalization [67, 84–86]. Other devices are occasionally used, especially for PAVMs with very large feeding arteries [84]. There is no size threshold (other than technical feasibility) for treatment [34, 35, 48, 67]. Multiple PAVMs can be occluded within one procedure, but several procedures can be required to occlude all visible PAVMs, and high proportions of HHT patients are left with residual PAVMs below the technical limits of vaso-occlusion. As for all procedures, it is impor-
tant that the vaso-occlusion be performed by radiologists experienced in the management and treatment of HHT-related PAVMs to decrease the risk of complications and improve efficacy: 20 procedures are required for interventional radiologists to meet the VASCERN eligibility requirements [87]. The risks appear to be low in expert hands, and major complications are usually quoted to be on the order of 1%. These include symptomatic lung infarction, systemic migration of embolization devices, air embolism, and, exceptionally, transient angina, cardiac arrhythmia, deep venous thrombosis, or pneumothorax. Infections related to the procedure are minimized by a scrupulous aseptic technique and prophylactic antibiotic therapy. More benign complications such as transient pleurisy are reported in approximately 10% of patients, more frequently in patients with diffuse or peripheral PAVMs [31].

Successful vaso-occlusion of PAVMs immediately decreases right-to-left shunting and improves arterial blood gases; however, residual hypoxemia and positive cardiac CE results are frequent. Long-term follow-up is mandatory for all HHT patients diagnosed with PAVMs, since they are likely to require ongoing medical management. Once the PAVM sac and dilated draining veins have regressed, PAVMs rarely recur; this can be demonstrated by simple chest X-ray in most cases. In a small proportion of cases, PAVMs may recanalize and acquire new arterial feeders, and vaso-occlusion of large PAVMs may unmask or facilitate the development of new PAVMs [86]. Detection is recommended, as these PAVMs may be successfully treated by repeated vaso-occlusion. The 2006, international guidelines recommended postembolization CT scans at 6–12 months, then every 3 years thereafter, with CT scans every 1–5 years for other patients with CT-evident PAVMs or positive CE results [68]. These recommendations, however, may be revisited, given the evidence of cumulative radiation burden pursuing this strategy [69], and CT-sparing follow-up strategies may be preferred (Fig. 3) [48].

Surgery
Surgical treatment of PAVMs, consisting of conservative resection of lung lobes or segments, is currently rare and restricted to complex or multiple PAVMs not amenable to transcatheter therapy. Lung transplantation has occasionally been performed on HHT/PAVM patients [31, 88], although PAVMs very rarely cause severe respiratory insufficiency reducing survival expectancy and leading to consideration of lung transplantation, and the life expectancy of patients declining lung transplantation for PAVMs exceeds the most optimistic lung transplantation figures [89].

Medical Management of Patients with PAVMs
As an adjunct to embolization treatment there are a number of relatively simple lifestyle and medical management recommendations to reduce complication rates from PAVMs [19].

Antibiotic Prophylaxis
It is often overlooked that in the general population, multiple procedures result in transient bacteremia that is cleared within minutes in the absence of antibiotics, but is prevented or resolved earlier with prior antibiotic administration [90]. Antibiotic prophylaxis immediately prior to dental and surgical procedures has been recommended for many years to patients with PAVMs, and this advice was not changed by the restrictions placed on prophylactic antibiotic use to prevent infective endocarditis [91]. Based on earlier endocarditis guidance, oral administration is conventionally 1–2 h before a procedure, with a further dose after the procedure. Amoxicillin/clavulanic acid is the preferred agent [90, 91], with metronidazole or clindamycin suggested for penicillin-allergic patients [91]. Whether specifically high-risk patients should have intravenous administration is currently under discussion [35, 48, 90]. Also whether prophylactic treatment may be useful for any HHT patient with a positive contrast echocardiogram, including those with no visible PAVM on chest CT, is debated.

Judicious dental hygiene is recommended for patients with PAVMs [91]. Recent data highlight the importance of a scrupulous aseptic technique, prompt treatment of other infections, and prophylactic antibiotics prior to other interventional procedures [35] to attempt to reduce the rate of cerebral abscesses.

Air Emboli
Scuba diving is not recommended, due to the risk of air embolism [68]. In some countries, the use of air filters is recommended for intravenous infusion to prevent air embolism and transient ischemic attacks; in other countries, expert nursing practice already includes these as “never events,” and the risks of modifying protocols may be counterproductive.

Oxygen for Hypoxemic Patients
Supplementary oxygen can be prescribed to symptomatic patients; there is anecdotal evidence of a benefit, and there may be an additional rationale with recent studies
demonstrating that low PaO₂ (not CaO₂) is the stimulus that mediates the opening of normal intrapulmonary shunts [74]. There is no rationale for prophylactic oxygen use to prevent hypoxic PH, because there is no alveolar hypoxia [52, 54].

Iron Deficiency
Optimization of the iron status is emerging as a core principle for the management of patients with PAVMs, particularly those with HHT and substantial iron loss from nosebleeds [92]. Iron deficiency restricts hemoglobin synthesis/erythropoiesis, and this is an even greater problem for patients with hypoxemia, since they depend on polycythemia to maintain the arterial oxygen content [49, 51], and for patients needing to achieve enhanced cardiac outputs due to low systemic vascular resistance (e.g., AVMs, sepsis) and/or hypoxemia [52, 53]. Iron deficiency is also associated with enhanced risks of venous [93] and arterial [40] thromboses in the HHT/PAVM population. However, iron deficiency treatments may inadvertently place patients with prior iron deficiency into at least transient iron overload states [35, 94, 95], and with recent evidence that this may enhance the risk of cerebral abscesses [35], and other bacterial infections [96], some caution is required.

Pulmonary Hypertension in HHT

Significant PH is observed in around 8% of HHT patients, usually secondary to high cardiac output [24], particularly in association with liver vascular malformations [97–100]. This is distinct from the rarer pulmonary arterial hypertension (PAH) phenotype, with different physiopathology and treatment algorithms (Table 2; Fig. 3). The key differentiating variable is the pulmonary artery wedge pressure (Table 2). The precapillary pulmonary gradient (diastolic pulmonary artery pressure minus the pulmonary artery wedge pressure as an estimate of left atrial pressure; normal: <7 mm Hg) may also contribute in difficult cases, especially combined postcapillary and precapillary PH; it is normal in high-output cardiac failure (HOCF)-related PH, but increased in patients with PAH.

Types of PH in HHT

AVM Associated, Secondary to High Cardiac Output and High Pulmonary Blood Flow

Where PH is present in HHT, it is usually secondary to a high pulmonary flow and increased cardiac output (in older classifications referred to as “postcapillary PH”). Although technically falling within the current group 2 PH umbrella [101], this is not a disorder of the left ventricle, and, again, the diagnostics and therapeutic algorithms should differ.

Systemic AVMs are one of the classic pathologies associated with high-cardiac-output states: reduced systemic vascular resistance leads to a fall in arterial blood pressure, activation of sympathetic and neurohormonal systems, and increased cardiac output to maintain vital organ perfusion at the expense of salt and water retention [102–104]. High left atrial filling pressures lead to pulmonary venous hypertension [102–104], and the increases in cardiac output may exceed the pump capacity of healthy left ventricles, leading to HOCF [103, 104].

Such patients usually have an elevated cardiac output, mildly elevated left atrial pressures, and low pulmonary vascular resistance (PVR). The PH improves following treatment of hepatic AVMs; in one study, after liver trans-
planted that removed hepatic AVMs, the mean cardiac index fell from 5.75 to 3.4 L/min/m² [105]. However, some hepatic AVM patients show secondary decreases in cardiac output at an advanced stage of heart failure [26], which can be misleading if no previous data on the cardiac index are available.

Other Types of PH That May Occur in HHT Patients

More rarely, PAH is observed (group 1), which is a “true” pulmonary arteriopathy. Patients have elevated pulmonary artery pressures, a normal left atrial pressure, a normal or reduced cardiac output, and significantly increased PVR.

There is a third, rarer group of HHT patients with liver involvement and a chronically high cardiac output, or with portal hypertension, in whom post- and precapillary PH can be observed. It is not yet known whether chronic exposure to an increased flow leads to remodeling of the pulmonary vascular bed as in Eisenmenger syndrome, but, intriguingly, one such case resolved following liver transplantation (Shovlin, unpublished observation).

Finally, it is also possible for patients with HHT, as for people without HHT, to suffer from thromboembolic PH, hypoxic PH in the setting of parenchymal lung disease, and other forms of PH; there are no data to indicate whether these pathologies are more or less common in HHT. Importantly, hypoxemia due to pulmonary AVMs does not lead to hypoxic PH, which depends on pulmonary vasoconstriction secondary to alveolar hypoxia, not arterial hypoxemia.

PAH is predominantly recognized in HHT2 patients due to ACVRL1 mutations; whether specific ACVRL1 genotypes influence the development of HHT (potentially with PAVM, or liver AVM and hyperdynamic PH) or idiopathic PAH is not yet clear. Other major genes, modifier genes, and/or environmental factors are likely to contribute to its pathogenesis.

Screening and Investigation of PH

Systematic screening for PH is not recommended for asymptomatic HHT patients. However, PH assessments should be incorporated into the diagnostic algorithms for any patient with unexplained shortness of breath or exercise limitation; echocardiography with estimation of the atrioventricular pressure gradient and cardiac index measurement should be systematically performed and liver evaluation and follow-up are mandatory to interpret the cardiac data.

Echocardiography is therefore an important method for patients with HHT, contributing to screening for both PAVM and right-to-left shunting using the contrast method, and further evaluating possible PH whatever its mechanism (high cardiac output or high PVR). The presence of dilated right-sided chambers and/or an increased velocity of the tricuspid regurgitation jet should prompt right-heart catheterization, which is required to confirm PH and to characterize its mechanism.

Mechanism and Management of PH due to an Increased Cardiac Output and Hyperdynamic State in HHT (Group 2 PH)

While in principle any systemic AVM will result in reduced systemic vascular resistance and activation of the renin/angiotensin/aldosterone system [104], in practice in HHT this is usually observed in the setting of large hepatic AVMs [26, 103, 106].

Liver involvement in HHT is detected in 41–78% of HHT patients using sensitive imaging technique [100, 107–109], though more commonly in HHT2 patients with pathogenic variants in ACVRL1. The evolution of vascular lesions consists in the progressive enlargement and creation of multiple direct AVMs [110]. The Doppler ultrasound grade evaluates multiple anatomical and dynamic features, and ranges from 0+ for a hepatic artery diameter of 5–6 mm, a peak flow velocity <80 cm/s, and a vascular resistivity index <0.55 through grades 1–4 defined by enlargement and increased flow velocity of the hepatic artery, hepatic artery branches (developing tortuosity), and hepatic veins, together with modifications of portal vein flow [98]. As emphasized by the recent EASL guidelines [111], 8% of patients with liver VMs will be symptomatic [100, 112, 113], and intense medical treatment successfully treats the majority of these [109, 111]. However, liver VMs in HHT can result in three important complications, including HOCF at a rate of 1.2 per 100 person-years [111] (in addition to portal hypertension and biliary necrosis). In the literature, HOCF symptoms were often observed in the 6th or 7th decade of life, including dyspnea, decreased exercise tolerance and fatigue, palpitations, peripheral edema, and ascites [26, 100, 112, 114, 115].

Ginon et al. [26] proposed a tentative description of disease course based on cardiac complications (Fig. 4) and the severity of PH, starting with a high-output state preceding left cardiac failure, and eventually further PH and right cardiac failure. Only few data are available about natural history, follow-up, and prognosis in HHT, and these focus more on the clinical phenotype of HOCF than PH. In the largest prospective series, onset of iron deficiency anemia was the most common precipitator of...
The Lung in Hereditary Hemorrhagic Telangiectasia

HOCF [112], which was supported by a second series in which HOCF appeared more commonly following a worsening of nosebleeds [114]. Progressive left atrial enlargement and likely an increased adrenergic drive appear to initiate a particularly difficult cycle with the development of atrial fibrillation that reduces the stroke volume.

Importantly for respiratory physicians, treatment of PH in the setting of hepatic AVMs and high cardiac output will differ substantially from the more usual PAH algorithms: symptomatic treatment includes salt restriction and diuretics, as well as optimal correction of iron deficiency, anemia, and atrial fibrillation, although this is not always efficacious. ACE inhibitors or beta-blockers have been tried, but they were not evaluated in patients with HOCF [104]. The majority of patients treated in this way demonstrate complete or partial resolution of symptoms, but these are not curative [111].

Liver transplantation is the only curative option for liver involvement in HHT [99, 105, 116], and is associated with complete or partial reversibility of HOCF and PH [105]. However, the optimal timing for liver transplantation remains unclear, as the morbidity is higher in patients at an advanced stage and in poor medical condition, with concurrent PH associated with stormier perioperative courses; a PVR <240 dyn s cm⁻⁵ has been suggested as a cutoff [99]. Despite the risks, when undertaken, postoperative mortality from orthotopic liver transplantation (OLT) in HHT is modest at 7–10%, and the long-term survival (>10 years) is excellent, ranging from 82 to 92% [105, 116]. Although hepatic artery ligation, banding, and embolization have been associated with improved cardiac symptoms, the significant associated morbidity and mortality mean that these are no longer recommended [68, 111].

Antiangiogenic therapy with an anti-vascular endothelial growth factor antibody (bevacizumab) might be effective in reducing the liver size and may be an interesting option in treating HOCF [117–119]. However, as relapses are observed after the end of treatment, OLT is still now the only radical cure for liver VMs in patients under the age of 65 years. Bevacizumab is recommended, either for patients over the age of 65 years or for those who are poor candidates for surgery; if the latter respond to bevacizumab, they can be reevaluated for OLT (on a “fast track”) [120].

Mechanism and Management of PAH (Group 1 or PAH)

PAH is caused by remodeling of small pulmonary arteries, with lumen narrowing and subsequent right heart failure and death. PAH in the absence of liver AVMs is very rare in HHT; its prevalence has recently been evaluated in France and estimated to be lower than 5% of confirmed PH in HHT [Revuz et al., 2017, in review]; however, it has not been systematically evaluated.

PAH in HHT is clinically indistinguishable from idiopathic PAH (with severe, progressive dyspnea on exertion and progressive right heart failure) and histologically similar to idiopathic PAH, with intimal hyperplasia, medial thickening and remodeling, in situ thrombosis, and plexiform lesions [27–29, 121–123].
PAVMs and PH in HHT

Special considerations are warranted with regard to unusual HHT patients with both PAVMs and PH. Anecdotally, vaso-occlusion of PAVMs in a patient with PH can lead to a sudden increase in right ventricular afterload and precipitate right heart failure. However, in a large series, the pulmonary arterial pressure was not generally modified by PAVM embolization [80]. Testing the hemodynamic consequences of PAVM vaso-occlusion by transient occlusion of the feeding vessel by an inflatable balloon has been proposed, but this did not predict the outcome in one published case [80]. Thus, as practiced some years ago [124], while vaso-occlusion of PAVMs in patients with known PH is technically possible, for patients with severe PH, based on current evidence, we would not usually interpret risk-benefit considerations to be in favor of PAVM embolization unless a patient had life-threatening hemoptysis or hemothorax. The risk of a rapid increase in size of PAVMs and of hemorrhage related to PAVM rupture might be heightened in individuals with severe PH [60].

The natural history and long-term outcomes of HHT-associated PAH are unknown, but they are no better than those of PAH due to BMPR2, with one series suggesting the outcome is worse than for patients with PAH due to ACVRL1 [29]. To what extent patients with HHT and PAH may benefit from modification of PAH management algorithms remains to be determined.

Conclusions

HHT is an important condition for the practicing pulmonologist. Where formalized regional or national screening/treatment programs are instituted, the life expectancy is increased when compared to historical controls and similar countries operating less well-implemented screening programs [127, 128]. The recent approval of the European Reference Network (VASCERN HHT; https://vascern.eu/expertise/rare-diseases-wgs/hht-wg/) is likely to improve visibility, transborder care, training, educational opportunities, and hopefully research for clinicians seeking greater insight into this important and long-overlooked condition.

121 Trembath RC: Mutations in the TGF-β type I receptor, ALK1, in combined primary pulmonary hypertension and hereditary haemorrhagic telangiectasia, implicates pathway specificity. J Heart Lung Transplant 2001;20:175.

126 Hosman AE, Devlin HL, Silva BM, Shovlin CL: Specific cancer rates may differ in patients with hereditary haemorrhagic telangiectasia compared to controls. Orphanet J Rare Dis 2013;8:193.
