Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Eur Thyroid J 2018;7:13–20

Positron Emission Tomography (PET) and PET/CT in Thyroid Cancer: A Systematic Review and Meta-Analysis

Schütz F.a · Lautenschläger C.a · Lorenz K.b · Haerting J.a

Author affiliations

aMartin Luther University Halle-Wittenberg, Institute for Medical Epidemiology, Biostatistics and Informatics, Halle (Saale), Germany
bDepartment of General, Visceral and Vascular Surgery, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany

Corresponding Author

Christine Lautenschläger

Martin Luther University Halle-Wittenberg

Institute for Medical Epidemiology, Biostatistics and Informatics

DE–06097 Halle (Saale) (Germany)

E-Mail christine.lautenschlaeger@medizin.uni-halle.de

Do you have an account?

Login Information

Contact Information

I have read the Karger Terms and Conditions and agree.


Background: Positron emission tomography (PET) and PET/CT are functional imaging methods that are widely used in diagnostic procedures in oncology. Objectives: The objective of this study was to assess the patient-relevant benefit of PET or PET/CT in patients with thyroid cancer based on a literature review and meta-analysis. Methods: A systematic review including studies that had been published until December 2013 was performed. To be included, studies had to prospectively investigate patients with thyroid cancer in a clinical setting of staging, restaging, or diagnosing tumour recurrence. Results: Out of 3,506 potentially relevant articles, 29 studies were included. No study directly evaluated the benefits of PET. Twenty-eight studies dealt with the diagnostic accuracy of PET or PET/CT, and 1 study evaluated the prognostic value of PET/CT. The authors showed that a positive result of PET/CT in restaging patients with differentiated thyroid cancer yielded a significant decrease in overall survival (hazard ratio, HR 5.01, CI 3.41–6.62). In patients with suspected recurrence of differentiated thyroid cancer, meta-analysis showed higher sensitivity of PET (89.7%, CI 78–99%) and PET/CT (94.3%, CI 87–97%) compared with conventional imaging (65.4%, CI 32–88%) and comparable results for specificity. Due to the low numbers of studies and patients, meta-analyses on medullary carcinoma did not produce meaningful results. Conclusion: The patient-relevant benefits of PET or PET/CT in thyroid cancer could not be evaluated satisfactorily based on the included studies. It remains unclear whether higher diagnostic test accuracy leads to changes in therapeutic strategies and better patient-relevant outcomes.

© 2017 European Thyroid Association. Published by S. Karger AG, Basel


  1. Reiners C, Geling M, Luster M, Farahati J, Mäder U: Epidemiologie des Schilddrüsenkarzinoms. Onkologe (Berl) 2005; 11: 11–19.
  2. Krebs in Deutschland 2011/2012, 10. Ausgabe Robert Koch-Institut (Hrsg) und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. (Hrsg). Berlin, 2015, DOI: 10.17886/rkipubl-2015–004. http://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland_2015/krebs_in_deutschland_2015.pdf?__blob=publicationFilee;. (accessed May 2, 2016).
  3. Chung JK, So Y, Lee JS, Choi CW, Lim SM, Lee DS, Hong SW, Youn YK, Lee MC, Cho BY: Value of FDG PET in papillary thyroid carcinoma with negative l3lI whole body scan. J Nucl Med 1999; 40: 986–992.
    External Resources
  4. Pacini F, Castagna MG, Brilli L, Pentheroudakis G: Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012; 23:vii110–vii119.
  5. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097.
  6. Positronenemissionstomographie (PET) und PET/CT bei Adenokarzinom des Pankreas, malignem Melanom, Schilddrüsenkarzinom, Ösophaguskarzinom, Ovarialkarzinom, Mam makarzinom und Knochen-und Weichteil­tumoren-Vorläufiger Berichtsplan, IQWIG. https://www.iqwig.de/de/projekte-ergebnisse/projekte/nichtmedikamentoese-verfahren/d06–01g-positronen-emissions-tomographie-pet-bei-schilddrusenkarzinom.1162.html#overviewe; (accessed May 19, 2017).
  7. Whiting PF, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J: The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 2003; 3: 25.
  8. SAS (Computer program): SAS 9.4 for Windows. Copyright (c) 2002–2012 by SAS Institute Inc., Cary, NC, USA.
  9. Review Manager (RevMan) (Computer program), version 5.3. Copenhagen, The Nordic Cochrane Centre, The Cochrane Collaboration, 2014.
  10. Nagamachi S, Wakamatsu H, Kiyohara S, Nishii R, Mizutani Y, Fujita S, Futami S, Arita H, Kuroki M, Nakada H, Uchino N, Tamura S, Kawai K: Comparison of diagnostic and prognostic capabilities of 18F-FDG-PET/CT, 131I-scintigraphy, and diffusion-weighted magnetic resonance imaging for postoperative thyroid cancer. Jpn J Radiol 2011; 29: 413–422.
  11. Nakajo M, Nakajo M, Jinguji M, Tani A, Kajiya Y, Tanabe H, Fukukura Y, Nakabeppu Y, Koriyama C: Diagnosis of metastases from postoperative differentiated thyroid cancer: comparison between FDG and FLT PET/CT studies. Radiology 2013; 267: 891–901.
  12. Oh JR, Byun BH, Hong SP, Chong A, Kim J, Yoo SW, Kang SR, Kim DY, Song HC, Bom HS, Min JJ: Comparison of 131I whole-body imaging, 131I SPECT/CT, and 18F-FDG PET/CT in the detection of metastatic thyroid cancer. Eur J Nucl Med Mol Imaging 2011; 38: 1459–1468.
  13. Chen YK, Liu FY, Yen RF, Kao CH: Compare FDG-PET and Tc-99m tetrofosmin SPECT to detect metastatic thyroid carcinoma. Acad Radiol 2003; 10: 835–839.
  14. Chung JK, So Y, Lee JS, Choi CW, Lim SM, Lee DS, Hong SW, Youn YK, Lee MC, Cho BY: Value of FDG PET in papillary thyroid carcinoma with negative 131I-whole body scan. J Nucl Med 1999; 40: 986–992.
    External Resources
  15. Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H: Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997; 24: 1342–1348.
  16. Frilling A, Tecklenborg K, Görges R, Weber F, Clausen M, Broelsch EC: Preoperative diagnostic value of 18F fluorodeoxyglucose positron emission tomography in patients with radioiodine-negative recurrent well-differentiated thyroid carcinoma. Ann Surg 2001; 234: 804–811.
  17. Giovanella L, Ceriani L, De Palma D, Suriano S, Castellani M, Verburg FA: Relationship between serum thyroglobulin and 18FDG-PET/CT in 131I-negative differentiated thyroid carcinomas. Head Neck 2012; 34: 626–631.
  18. Giovanella L, Trimboli P, Verburg FA, Treglia G, Piccardo A, Foppiani L, Ceriani L: Thyroglobulin levels and thyroglobulin doubling time independently predict a positive 18F-FDG PET/CT scan in patients with biochemical recurrence of differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 2013; 40: 874–880.
  19. Grünwald F, Menzel C, Bender H, Palmedo H, Willkomm P, Ruhlmann J, Franckson T, Biersack HJ: Comparison of 18FDG-PET with 131iodine and 99mTc-sestamibi scintigraphy in differentiated thyroid cancer. Thyroid 1997; 7: 327–335.
  20. Helal BO, Merlet P, Toubert ME, Franc B, Schvartz C, Gauthier-Koelesnikov H, Prigent A, Syrota A: Clinical Impact of 18F-FDG PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative 131I scanning results after therapy. J Nucl Med 2001; 42: 1464–1469.
    External Resources
  21. Jadvar H, McDougall IR, Segall GM: Evaluation of suspected recurrent papillary thyroid carcinoma with 18F-fluorodeoxyglucose positron emission tomography. Nucl Med Commun 1998; 19: 547–554.
    External Resources
  22. Kim SJ, Lee TH, Kim IJ, Kim YK: Clinical implication of F-18 FDG PET/CT for differentiated thyroid cancer in patients with negative diagnostic iodine-123 scan and elevated thyroglobulin. Eur J Radiol 2007; 70: 17–24.
  23. Kingpetch K, Pipatrattana R, Tepmongkol S, Sirisalipoch S, Chaiwatanarat T: Utility of 8F-FDG PET/CT in well differentiated thyroid carcinoma with high serum antithyroglobulin antibody. J Med Assoc Thai 2011; 94: 1238–1244.
    External Resources
  24. Kunawudhi A, Pak-art R, Keelawat S, Tepmongkol S: Detection of subcentimeter metastatic cervical lymph node by 18F-FDG PET/CT in patients with well-differentiated thyroid carcinoma and high serum thyroglobulin but negative 131I whole-body scan. Clin Nucl Med 2012; 37: 561–567.
  25. Mirallié E, Guillan T, Bridji B, Resche I, Rousseau C, Ansquer C, Bodet-Milin C, Curtet C, Carnaille B, Murat A, Charbonnel B, Kraeber-Bodéré F: Therapeutic impact of 18FDG-PET/CT in the management of iodine-negative recurrence of differentiated thyroid carcinoma. Surgery 2007; 142: 952–958.
  26. Ozkan E, Aras G, Kucuk NO: Correlation of 18F-FDG PET/CT findings with histopathological results in differentiated thyroid cancer patients who have increased thyroglobulin or antithyroglobulin antibody levels and negative 131I whole-body scan results. Clin Nucl Med 2013; 38: 326–331.
  27. Palmedo H, Bucerius J, Joe A, Strunk H, Hortling N, Meyka S, Roedel R, Wolff M, Wardelmann E, Biersack HJ, Jaeger U: Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J Nucl Med 2006; 47: 616–624.
    External Resources
  28. Sager S, Kabasakal L, Halac M, Maecke H, Uslu L, Önsel Ç, Kanmaz B: Comparison of 99mTc-HYNIC-TOC and HYNIC-TATE octreotide scintigraphy with FDG PET and 99mTc-MIBI in local recurrent or distant metastatic thyroid cancers. Clin Nucl Med 2013; 38: 321–325.
  29. Vural GU, Akkas BE, Ercakmak N, Basu S, Alavi A: Prognostic significance of FDG PET/CT on the follow-up of patients of differentiated thyroid carcinoma with negative 131I whole-body scan and elevated thyroglobulin levels: correlation with clinical and histopathologic characteristics and long-term follow-up data. Clin Nucl Med 2012; 37: 953–959.
  30. Weber T, Ohlhauser D, Hillenbrand A, Henne-Bruns D, Reske SN, Luster M: Impact of FDG-PET computed tomography for surgery of recurrent or persistent differentiated thyroid carcinoma. Horm Metab Res 2012; 44: 904–908.
  31. Yamaga LY, Cunha ML, Wagner J, Thom AF, Daniel MM, Funari MB: Diagnostic value of positron emission tomography/computed tomography with fluorine-18 fluordeoxyglucose in patients with differentiated thyroid gland carcinoma, high thyroglobulin serum levels and negative iodine whole body scan. Arq Bras Endocrinol Metabol 2007; 51: 581–586.
  32. Kauhanen S, Schalin-Jäntti C, Seppänen M, Kajander S, Virtanen S, Schildt J, Lisinen I, Ahonen A, Heiskanen I, Väisänen M, Arola J, Korsoff P, Ebeling T, Sane T, Minn H, Välimäki MJ, Nuutila P: Complementary roles of 18F-DOPA PET/CT and 18F-FDG PET/CT in medullary thyroid carcinoma. J Nucl Med 2011; 52: 1855–1863.
  33. Marzola MC, Pelizzo MR, Ferdeghini M, Toniato A, Massaro A, Ambrosini V, Fanti S, Gross MD, Al-Nahhas A, Rubello D: Dual PET/CT with 18F-DOPA and 18F-FDG in metastatic medullary thyroid carcinoma and rapidly increasing calcitonin levels: comparison with conventional imaging. Eur J Surg Oncol 2010; 36: 414–421.
  34. Musholt TJ, Musholt PB, Dehdashti F, Moley JF: Evaluation of fluorodeoxyglucose positron emission tomographic scanning and its association with glucose transporter expression in medullary thyroid carcinoma and pheochromocytoma: a clinical and molecular study. Surgery 1997; 122: 1049–1061.
  35. Naswa N, Sharma P, Suman S, Lata S, Kumar R, Malhotra A, Bal C: Prospective evaluation of 68Ga-DOTA-NOC PET-CT in patients with recurrent medullary thyroid carcinoma: comparison with 18F-FDG PET-CT. Nucl Med Commun 2012; 33: 766–774.
  36. Rubello D, Rampin L, Nanni C, Banti E, Ferdeghini M, Fanti S, Al-Nahhas A, Gross MD: The role of 18F-FDG PET/CT in detecting metastatic deposits of recurrent medullary thyroid carcinoma: a prospective study. Eur J Surg Oncol 2008; 34: 581–586.
  37. Sager S, Kabasakal L, Ocak M, Maecke H, Uslu L, Halac M, Asa S, Sager G, Önsel C, Kanmaz B: Clinical value of technetium-99m-labeled octreotide scintigraphy in local recurrent or metastatic medullary thyroid cancers: a comparison of lesions with 18F-FDG-PET and MIBI images. Nucl Med Commun 2013; 34: 1190–1195.
  38. Skoura E, Datseris IE, Rondogianni P, Tsagarakis S, Tzanela M, Skilakaki M, Exarhos D, Alevizaki M: Correlation between calcitonin levels and 18F-FDG-PET/CT in the detection of recurrence in patients with sporadic and hereditary medullary thyroid cancer. ISRN Endocrinol 2012; 2012: 375231.
  39. Carr LL, Mankoff DA, Goulart BH, Eaton KD, Capell PT, Kell EM, Baumann JE, Martins RG: Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res 2010; 16: 5260–5268.
  40. Wells SA, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, Baudin E, Elisei R, Jar­zab B, Vasselli JR, Read J, Langmuir P, Ryan AJ, Schlumberger MJ: Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 2012; 30: 134–141.
  41. Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, de la Fouchardiere C, Pacini F, Paschke R, Kee Shong YK, Sherman SI, Smit JWA, Chung J, Kappeler C, Peña C, Molnár I, Schlumberger M: Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 2014; 384: 319–328.
  42. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, Habra MA, Newbold K, Shah MH, Hoff AO, Gianoukakis AG, Kiyota N, Taylor MH, Kim SB, Krzyzanowska MK, Dutcus CE, de las Heras B, Zhu Z, Sherman SI: Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015; 372: 621–630.
  43. Haslerud T, Brauckhoff K, Reisæter L, Kuefner Lein R, Heinecke A, Varhaug JE, Biermann M: F18-FDG-PET for recurrent differentiated thyroid cancer: a systematic meta-analysis. Acta Radiol 2016; 57: 1193–1200.
  44. Cheng X, Bao L, Xu Z, Li D, Wang J, Li Y: 18F-FDG-PET and 18F-FDG-PET/CT in the detection of recurrent or metastatic medullary thyroid carcinoma: a systematic review and meta-analysis. J Med Imaging Radiat Oncol 2012; 56: 136–142.
  45. Romero-Lluch AR, Cuenca-Cuenca JI, Guerrero-Vázquez R, Martínez-Ortega AJ, Tirado-Hospital JL, Borrego-Dorado I, Navarro-González E: Diagnostic utility of PET/CT with 18F-DOPA and 18F-FDG in persistent or recurrent medullary thyroid carcinoma: the importance of calcitonin and carcinoembryonic antigen cutoff. Eur J Nucl Med Mol Imaging 2017, DOI 10.1007/s00259-017-3759-4.
  46. Golubić AT, Pasini Nemir E, Žuvić M, Mutvar A, Kusačić Kuna S, Despot M, Samardžić T, Huić D: The value of 18F-DOPA PET/CT in patients with medullary thyroid carcinoma and increased calcitonin values. Nucl Med Commun 2017; 38: 636–641.
  47. Yamaga LYI, Cunha ML, Campos Neto GC, Garcia MRT, Yang JH, Camacho CP, Wagner J, Funari MB: 68Ga-DOTATATE PET/CT in recurrent medullary thyroid carcinoma: a lesion-by-lesion comparison with 111In-octreotide SPECT/CT and conventional imaging. Eur J Nucl Med Mol Imaging 2017; 44: 1695–1701.
  48. Lu CZ, Cao SS, Wang W, Liu J, Fu N, Lu F: Usefulness of PET/CT in the diagnosis of recurrent or metastasized differentiated thyroid carcinoma. Oncol Lett 2016; 1: 2420–2423.
  49. Vrachimis A, Stegger L, Wenning C, Noto B, Burg MC, Konnert JR, Allkemper T, Heindel W, Riemann B, Schäfers M, Weckesser M: 68Ga-DOTATATE PET/MRI and 18F-FDG PET/CT are complementary and superior to diffusion-weighted MR imaging for radioactive-iodine-refractory differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2016; 43: 1765–1772.
  50. Triviño Ibáñez EM, Muros MA, Torres Vela E, Llamas Elvira JM: The role of early 18F-FDG PET/CT in therapeutic management and ongoing risk stratification of high/intermediate-risk thyroid carcinoma. Endocrine 2016; 51: 490–498.
  51. Trybek T, Kowalska A, Lesiak J, Młynarczyk J: The role of 18F-fluorodeoxyglucose positron emission tomography in patients with suspected recurrence or metastatic differentiated thyroid carcinoma with elevated serum thyroglobulin and negative I-131 whole body scan. Nucl Med Rev Cent East Eur 2014; 17: 87–93.
  52. Pace L, Klain M, Salvatore B, Nicolai E, Zampella E, Assante R, Pellegrino T, Storto G, Fonti R, Salvatore M: Prognostic role of 18F-FDG PET/CT in the postoperative evaluation of differentiated thyroid cancer patients. Clin Nucl Med 2015; 40: 111–115.
  53. Salaun PY, Campion L, Ansquer C, Frampas E, Mathieu C, Robin P, Bournaud C, Vuillez JP, Taieb D, Rousseau C, Drui D, Mirallié E, Borson-Chazot F, Goldenberg DM, Chatal JF, Barbet J, Kraeber-Bodéré F: 18F-FDG PET predicts survival after pretargeted radioimmunotherapy in patients with progressive metastatic medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2014; 41: 1501–1510.

Article / Publication Details

First-Page Preview
Abstract of Clinical Thyroidology / Review

Received: June 26, 2017
Accepted: September 19, 2017
Published online: October 24, 2017

Number of Print Pages: 8
Number of Figures: 4
Number of Tables: 1

ISSN: 2235-0640 (Print)
eISSN: 2235-0802 (Online)

For additional information: https://www.karger.com/ETJ