Takotsubo Syndrome and Inflammatory Bowel Diseases: Does a Link Exist?

Antonio Mirijelloa Maria Maddalena D’Erricoa Serafino Curcia Fabrizio Bossab
Cristina d’Angeloc Gianluigi Vendemialed Antonio Gasbarrinie
Giovanni Addoloratoe Salvatore De Cosmoa

aInternal Medicine Unit, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; bGastroenterology Unit, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy; c“Gli Angeli di Padre Pio,” Fondazione Centri di Riabilitazione Padre Pio Onlus, San Giovanni Rotondo, Italy; dInternal Medicine and Geriatrics Residency School, University of Foggia, Foggia, Italy; eDepartment of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy

Keywords
Inflammatory bowel diseases · Stress cardiomyopathy · Endothelial dysfunction · Affective disorders · Systemic inflammation

Abstract

Background: Takotsubo syndrome (TTS) is an acute cardiac dysfunction in the absence of viral causes or obstructive coronary disease completely reversible within 4–8 weeks. Inflammatory bowel diseases (IBD) are a group of diseases caused by the interaction between immune system, genetic, and environmental factors against intestinal mucosa. Both these syndromes are characterized by complex mechanisms involving endothelial dysfunction and affective disorders. Aim: To assess the possibility of an association between IBD and TTS. Methods: First, we present a case of TTS in a patient affected by active stenosing Crohn’s disease. Articles in English language were collected from PubMed and Google Scholar databases with the search terms “takotsubo,” “IBD,” “crohn disease,” “ulcerative colitis”. Results: Both TTS and IBD show multiple common features: preference for female patients, recurrent course of disease, association with endothelial dysfunction, and affective disorders. Patients affected by IBD could show specific triggers for TTS, such as malabsorption, electrolytes disturbances, and affective disorders. Conclusions: Despite pathophysiological similarities between TTS and IBD in active phase, future studies are needed to confirm this apparently possible association and to assess the presence of a pathophysiological link between these diseases.

© 2019 S. Karger AG, Basel

Introduction

Takotsubo syndrome (TTS) is an acute cardiac disease presenting by the association of symptoms typical of acute coronary syndrome (ACS), electrocardiographic...
changes, cardiac biomarkers abnormalities, and echocardiographic left ventricular systolic dysfunction (Table 1) [1]. Contrarily to ACS, these alterations are transient and reversible usually within 4–8 weeks.

The term “takotsubo” was first used by Dote et al. [2] and refers to a typical Japanese ceramic pot with a narrow neck and a rounded (ballooned) lower portion, similar to the end-systolic shape of the left ventricle (LV), observed in its typical form [3]. Usually – but not necessarily – TTS occurs after a stressful event (physical or psychological), with a significantly higher prevalence in postmenopausal women [4]. Contrarily to ACS, in TTS, coronary angiography does not show hemodynamically significant stenoses. However, the presence of coronary artery disease does not represent an exclusion criterion. Moreover, LV motion abnormalities extending beyond a single coronary artery supply territory and the complete recovery of systolic function after 4–8 weeks represent typical features of TTS [5].

Pathophysiology of TTS, although not completely known, seems related to the cardiac effects of catecholamines, both to an excessive production and to an altered response, possibly due to a polygenic predisposition [4, 6]. Central nervous system (e.g., limbic system, hippocampus, amygdala, hypothalamic-pituitary axis) and autonomic nervous system mediate neuro-hormonal secretion. The excess of catecholamines induces several cardiac effects: (1) direct cardiotoxicity through myocardial hypoxia and free radicals production – this mechanism could be enhanced by electrolytic alterations; (2) subocclusive epicardial coronary spasm; (3) endothelial dysfunction with consequent imbalance between vasodilating and vasoconstricting factors, in favor of the latter – this effect seems to be potentiated by post-menopausal estrogen deficiency; (4) LV ballooning mediated by differences in myocardial regional adrenoreceptors’ density (β2-receptors mostly expressed at apex, while β1-receptors and sympathetic nerve endings mostly expressed at basal segments). All these effects contribute to myocardial hypoxia, ventricular stunning, and reduced ejection fraction (EF) [6].

Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders targeting the gastrointestinal tract, mainly represented by Crohn’s disease (CD) and ulcerative colitis (UC) [7]. Given the unclear etiology, IBD have been erroneously considered as psychosomatic disorders for several years [8]. At present, immune system dysregulation, genetic and environmental factors, and possibly microbiota alterations are considered the main causal mechanisms [9, 10]. However, psychological distress could play a significant role during disease exacerbation [11–13]. Beyond the bowel, IBD show several extraintestinal manifestations including urinary, musculoskeletal, pulmonary, ocular, cutaneous, and cardiac involvement [9, 14]. Pericarditis, myocarditis, endocarditis, valvulopathies, arrhythmias, arterial and venous thromboembolism, Takayasu arteritis, and heart failure represent the most known cardiovascular manifestations [10]. In addition, affective disorders represent a common feature of IBD patients [8].

Table 1. International Takotsubo Diagnostic Criteria [4]

<table>
<thead>
<tr>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Transient left ventricular dysfunction (hypokinesia, akinesia, or dyskinesia) presenting as apical ballooning or midventricular, basal or focal wall motion abnormalities</td>
</tr>
<tr>
<td>Regional wall motion abnormality usually extends beyond a single epicardial vascular distribution; rare cases of wall motion abnormalities in subtended territory of a single coronary artery (focal TTS)</td>
</tr>
<tr>
<td>Right ventricular involvement can be present</td>
</tr>
<tr>
<td>2. Emotional, physical, or combined triggers can precede TTS, but this is not obligatory</td>
</tr>
<tr>
<td>3. Neurologic disorders (e.g., subarachnoid hemorrhage, stroke/transient ischemic attack, or seizure) as well as pheochromocytoma may serve as trigger for TTS</td>
</tr>
<tr>
<td>4. Newly onset ECG abnormalities (ST-segment elevation or depression, T-wave inversion, QTc prolongation); rare cases without ECG changes</td>
</tr>
<tr>
<td>5. Moderately elevated cardiac biomarkers levels (troponin, creatine kinase, BNP)</td>
</tr>
<tr>
<td>6. Significant coronary artery disease does not exclude TTS</td>
</tr>
<tr>
<td>7. No evidence of infectious myocarditis</td>
</tr>
<tr>
<td>8. Postmenopausal women predominantly affected</td>
</tr>
</tbody>
</table>

TTS, takotsubo syndrome; ECG, electrocardiogram; BNP, brain natriuretic peptide.
We present a case of recurrence of TTS in a patient affected by uncontrolled stenosing CD, during hospitalization for malnutrition. In addition, we conducted a search of the available English literature (PubMed and Google Scholar) with the terms “takotsubo,” “IBD,” “Crohn Disease,” “Ulcerative Colitis,” in order to perform a review of this possible association. Written consent was obtained from the patient for case presentation.

Case Presentation

An 81-year-old woman was admitted to our Internal Medicine inpatient unit because of the persistence for several months of abdominal pain, constipation alternating with diarrhea, anorexia, weight loss (about 10 kg), and signs of malnutrition. The patient had a history of hypertension, multinodular thyroid goiter, chronic gastritis, diverticular disease, carotid atherosclerosis, and chronic angioedema urticaria syndrome. She had suffered from recurrent abdominal pain since adolescence, alternating constipation with diarrhea, and for this reason she had been considered a *psychosomatic patient*. However, the patient has never received a psychiatric diagnosis, and she had conducted a normal life with her family. At the age of 73 years old she was finally diagnosed with CD stenosing the distal ileum. Some months after diagnosis, she underwent ileocecal resection because of bowel perforation. At the age of 78 years old, the patient was admitted to a coronary-ICU because of chest pain, dyspnea, electrocardiogram alterations, and raised troponin levels occurred after a quarrel. Echocardiography showed severe left ventricular systolic dysfunction (EF 20–25%) with medio-apical, antero-septal, and lateral wall akinesia. Coronary angiography showed mild coronary atherosclerosis without hemodynamically significant lesions. After acute phase, cardiac rehabilitation program was started with prescription of ranolazine, acetylsalicylic acid, ace-inhibitors, nitrates, spironolactone. About 2 weeks later, an echocardiogram showed a significant improvement of ventricular function with resolution of regional alterations and mild global systolic dysfunction (EF 46%).

At admission to our Department, physical examination revealed normal vital signs, impaired nutritional status (weight 50 kg, height 160 cm, BMI 19.5 kg/m²), and tenderness at palpation of right lower abdominal quadrants. Fasting and parenteral nutrition was prescribed. Blood tests showed hypoalbuminemia, slight elevation of inflammatory markers (CRP, ESR), no electrolyte alterations. During hospitalization, the patient developed chest discomfort: blood pressure was 170/105 mm Hg, pulse rate 54 bpm. A 12-lead electrocardiogram showed sinus bradycardia and T-wave inversion on V2–V6 precordial leads. Troponin levels, initially normal, significantly raised until 2.72 ng/mL (n.v. <0.015 ng/mL) after 12 h. Transthoracic echocardiogram showed severe left ventricular dysfunction (EF 25%) with apical ballooning. Cardiac catheterization did not show hemodynamically significant coronary artery lesions. Supportive treatment was continued, with the addition of enoxaparin. Troponin levels normalized on the eighth day. Patient’s diagnostic workup was completed with colonoscopy that showed the presence of a (re)stenosis of the terminal ileum, with 20 cm-length extension at virtual colonoscopy. Histology showed signs of chronic inflammation and granular lesions consistent with recurrence of CD. Treatment with methyl-prednisolone 40 mg/day was started. An echocardiogram performed at day 20th showed normal left ventricular systolic function with complete resolution of apical ballooning. The patient was discharged in improved general status after 24 days of hospitalization with prescription of vedolizumab, steroid tapering-off, aspirin, ramipril, ranolazine, loop diuretic, spironolactone, atorvastatin, beta-blocker, nitrates, and nutritional support.

Discussion

The present case shows the occurrence of chest pain and LV dysfunction without significant coronary lesions in a patient affected by active CD. This association fulfills InterTAK Diagnostic Criteria for TTS [4]. Moreover, evaluating medical history, the previous cardiac event occurred at the age of 78 years old shows criteria for a first episode of TTS, while the one we observed represents a recurrence of TTS, 3 years later. Interestingly, the recurrence of TTS in our patient was concomitant with CD exacerbation. According to literature, TTS recurrence is possible, even if uncommon, with incidence ranging from 1.2% at 6 months to 5% at 6 years. Notably, recurrence can have a different trigger from the first episode [15].

About 90% of TTS occurs in post-menopausal women, after a stressful event [16]. It is conceivable that in our patient the fear for hospitalization and diagnostic workup induced a reactive state of anxiety, precipitating TTS. With this regard, a high prevalence of affective disorders (e.g., anxiety and depression) has been reported both in patients affected by TTS [17] and by IBD [18]. Patients showing anxiety and/or depression frequently show increased norepinephrine response to emotional stress and decreased reuptake of norepinephrine [4]. In these patients, catecholamines’ effects are particularly pronounced (e.g., direct myocardial toxicity, epicardial coronary spasm, endothelial dysfunction, and post-ischemic myocardial stunning) [5, 19].

Literature data show a high prevalence of endothelial dysfunction in IBD patients, particularly CD patients, as a result of local and systemic inflammation driven by mucosal damage [20–22]. These pathophysiological mechanisms produce arterial stiffness, early atherosclerosis, and myocardial systolic-diastolic dysfunction [23], accounting for the increased thrombotic burden observed in IBD patients despite a lower prevalence of classical cardiovascular risk factors [23, 24]. Moreover, it seems that drugs modulating bowel inflammation, such as probiotics [25] or infliximab [23], are able to reduce CV risk of IBD patients. Similarly, heparin treatment during active IBD phase is able to modulate the reduction in bowel inflammation [21].
Table 2. Cases of TTS in patients affected by CD, reported in the English literature

<table>
<thead>
<tr>
<th></th>
<th>Patient, female</th>
<th>CD, active phase</th>
<th>Comorbidities</th>
<th>Clinical manifestation</th>
<th>Malabsorption</th>
<th>Corticosteroid treatment</th>
<th>Trigger</th>
<th>Other treatment</th>
<th>EKG</th>
<th>LV recovery, days</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Harle et al. [22], 2011</td>
<td>39</td>
<td>No</td>
<td>No</td>
<td>Pulmonary edema</td>
<td>No</td>
<td>Yes, recently discontinued</td>
<td>Accidental administration of epinephrine</td>
<td>Adalimumab</td>
<td>ST-segment elevation, T-waves inversion</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Koeth et al. [27], 2008</td>
<td>67</td>
<td>No</td>
<td>Hypertension</td>
<td>Chest pain</td>
<td>No</td>
<td>No</td>
<td>Not known</td>
<td>Beta-blockers, ace-inhibitors, aspirin</td>
<td>T-waves inversion</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Mengoni et al. [25], 2016</td>
<td>71</td>
<td>Yes</td>
<td>Obesity, DM</td>
<td>Chest pain and dyspnea</td>
<td>Yes</td>
<td>Yes, recently discontinued</td>
<td>Pulmonary embolism, CD exacerbation</td>
<td>NA</td>
<td>T-waves inversion</td>
<td>Few</td>
</tr>
<tr>
<td>4</td>
<td>Chmielecki et al. [24], 2012</td>
<td>61</td>
<td>Yes</td>
<td>Intestinal tumor</td>
<td>Chest pain</td>
<td>Yes</td>
<td>Yes</td>
<td>CD exacerbation</td>
<td>NA</td>
<td>ST-segment elevation, T-waves inversion, prolonged QT interval</td>
<td>Not reported</td>
</tr>
<tr>
<td>5</td>
<td>Zegdi et al. [23], 2008</td>
<td>51</td>
<td>No</td>
<td>Hypertension, breast cancer</td>
<td>Pulmonary edema and hypertension</td>
<td>No</td>
<td>NA</td>
<td>Breast surgery, pheochromocytoma</td>
<td>NA</td>
<td>ST-segment depression</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Detweiler et al. [28], 2019</td>
<td>68</td>
<td>Yes</td>
<td>Depression, hypertension, COPD, DM, neoplasm of adrenal gland, meningioma</td>
<td>Hypotension and lower limb edema</td>
<td>Yes</td>
<td>NA</td>
<td>Depression</td>
<td>Vitamin D, diltiazem, thiazide, methylphenidate, mirtazapine, ondansetron, oxycodone</td>
<td>Tachycardia and ST-segment elevation</td>
<td>Not reported</td>
</tr>
<tr>
<td>7</td>
<td>Emmert et al. [29], 2009</td>
<td>25</td>
<td>Yes</td>
<td>No</td>
<td>Loss of consciousness</td>
<td>Yes</td>
<td>Yes</td>
<td>CD exacerbation, adalimumab</td>
<td>Azathioprine, adalimumab</td>
<td>Not reported</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>Moses [30], 2018</td>
<td>54</td>
<td>Yes</td>
<td>No</td>
<td>Shock</td>
<td>Yes</td>
<td>NA</td>
<td>CD exacerbation</td>
<td>NA</td>
<td>Not reported</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Tagami et al. [26], 2016</td>
<td>67</td>
<td>No</td>
<td>No</td>
<td>Chest pain and dyspnea</td>
<td>Yes</td>
<td>NA</td>
<td>Depression, eating disorder</td>
<td>No</td>
<td>Sinus tachycardia</td>
<td>Few weeks</td>
</tr>
</tbody>
</table>

TTS, takotsubo syndrome; CD, Crohn’s disease; LV, left ventricle; NA, not applicable.
Similarities between IBD and TTS led us to hypothesize a possible association between these diseases. However, literature data are extremely few. To the best of our knowledge, there are only 13 case reports (Tables 2, 3) describing the occurrence of TTS in IBD patients [26–38]. Interestingly, the totality of reported TTS occurred in female IBD patients. As well as for TTS patients [17, 39], the prevalence of affective disorders is high among IBD patients, particularly among female [18]. Besides the well-known role played by excessive catecholamine release in triggering TTS [26], such as in pheochromocytoma [27], IBD patients, and particularly CD patients, could show disease-specific triggers.

According to Chmielecki et al. [24], malabsorption with consequent electrolytes disturbances could play a pathophysiological role as TTS trigger [28]. Mengoni et al. [25] emphasize the role of disease exacerbation with consequent activation of inflammatory patterns and microvascular dysfunction [29]. According to Zegdi et al. [23] and to Tagami et al. [26], depression and affective disorders could represent specific triggers [27, 30]. Interestingly, 4 out of 9 CD patients presenting with TTS were on treatment with corticosteroids and 5 out of 9 were affected by active CD (Table 2). Finally, some patient did not show any apparent trigger [31].

None of the 4 UC patients with TTS were affected by active disease, neither treated by corticosteroids nor showing malabsorption (Table 3). Thus, it is difficult to find, on the basis of the only 4 reported cases, a specific pathophysiological mechanism for TTS among UC patients [35–38].

Starting from the present case and by reviewing the available literature, TTS and IBD show several similarities: higher prevalence among female patients, recurrent disease course, association with endothelial dysfunction, and affective disorders. However, the possibility of an association between IBD and TTS has never been explored.

During active phase of IBD, intestinal and systemic inflammation plays a pivotal role in the pathogenesis of endothelial and microvascular dysfunction [20, 22, 29]. Endothelial dysfunction represents one of the mechanisms of TTS [4, 6]. The emotional reaction to IBD symptoms and to malnutrition is the mechanism strictly associated to the onset of anxiety and depression during disease activity phase [8, 18]. On this connection, even TTS patients show a higher prevalence of anxiety and depression compared to general population [16, 40], significantly influencing the disease by increasing the concentration of catecholamines [41]. All these mechanisms could trigger TTS in predisposed patients (e.g., female, elderly, with abnormal catecholamine secretion or response, etc.) during active phase of IBD (Fig. 1).

In conclusion, TTS and IBD, particularly CD, share multiple common features. Basing on these aspects, could it be conceivable to consider TTS as an extraintestinal manifestation of IBD, or a consequence of IBD activity in predisposed subjects? Future researches, even based on translational studies in animal models, may be useful to investigate the putative mechanisms that may lead to the possible association between TTS and IBD.

Table 3. Cases of TTS in patients affected by UC, reported in the English literature

<table>
<thead>
<tr>
<th>Patient, female</th>
<th>UC, active phase</th>
<th>Comorbidities</th>
<th>Case description</th>
<th>Malabsorption</th>
<th>Corticosteroid treatment</th>
<th>Trigger</th>
<th>Other treatment</th>
<th>EKG</th>
<th>LV recovery, days</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Chatterjee et al. [31], 2018</td>
<td>71</td>
<td>No</td>
<td>No</td>
<td>Chest pain</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>melazasine</td>
<td>T-waves inversion, prolonged QT interval</td>
<td>28</td>
</tr>
<tr>
<td>2 Elali et al. [32], 2011</td>
<td>70</td>
<td>No</td>
<td>COPD, osteoporosis</td>
<td>Chest pain, dyspnoea, shock and pulmonary edema</td>
<td>No</td>
<td>NA</td>
<td>Vigorous exercise</td>
<td>NA</td>
<td>ST-segment elevation</td>
<td>22</td>
</tr>
<tr>
<td>3 Makaryus et al. [33], 2008</td>
<td>47</td>
<td>No</td>
<td>No</td>
<td>Chest pain, shock</td>
<td>No</td>
<td>NA</td>
<td>Psychological stress</td>
<td>No</td>
<td>NA</td>
<td>14</td>
</tr>
<tr>
<td>4 Rossi [34], 2009</td>
<td>81</td>
<td>No</td>
<td>Arthritis, Grave’s disease</td>
<td>Chest pain, presyncope</td>
<td>No</td>
<td>No</td>
<td>Sport, pheochromocitoma</td>
<td>Methimazole, famotidine, estrogen patch</td>
<td>ST-segment elevation, Q wave</td>
<td>3, 8</td>
</tr>
</tbody>
</table>

TTS, takotsubo syndrome; UC, ulcerative colitis; LV, left ventricle; NA, not applicable.
Acknowledgment

We thank Ms. Caterina Mirijello for the expert revision of the English language.

Statement of Ethics

The study is consistent with the principles of the Declaration of Helsinki on clinical research involving human subjects and according to the quality standards of Good Clinical Practice. Written informed consent was obtained from the patient.

Disclosure Statement

Authors declare that no conflict of interest exists.

Author Contributions

Financial Support

None.

Guarantor of the Article

Antonio Mirijello.

References

Takotsubo and IBD: Case Report and Review of the Literature

