The Clinical Spectrum of McCune-Albright Syndrome and Its Management

Tiahna Spencer Kristen S. Pan Michael T. Collins Alison M. Boyce
Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA

Keywords
Fibrous dysplasia · Fibroblast growth factor 23 · Metabolic bone disease · Gαs · Mosaicism

Abstract
McCune-Albright syndrome (MAS) is a rare, mosaic disorder presenting along a broad clinical spectrum. Disease arises from somatic-activating GNAS mutations, leading to constitutive Gαs activation and ligand-independent signaling of the Gαs-coupled protein receptor. The phenotype is largely determined by location and extent of tissues in which the GNAS mutation is expressed, as well as the pathophysiologic effects of Gαs activation within these tissues. Patients present clinically with a variable combination of fibrous dysplasia of bone (FD), café-au-lait skin macules, and hyperfunctioning endocrinopathies. In bone, Gαs leads to impaired differentiation of skeletal stem cells and formation of discrete, expansile FD lesions, resulting in fractures, pain, and functional impairment. A systematic approach to diagnosis and management is critically important to optimize outcomes for patients with FD/MAS. There are no medical therapies capable of altering the disease course in FD; however, screening and treatment for endocrinopathies can mitigate some skeletal morbidities. This review summarizes current understanding of MAS pathophysiology, describes the spectrum of clinical features, and includes a detailed discussion of the recommended approach to diagnosis and management.

Introduction
McCune-Albright syndrome (MAS) is a rare mosaic disorder that presents along a broad clinical spectrum. MAS was originally described in 1936 as a triad of fibrous dysplasia of bone (FD), café-au-lait skin macules, and precocious puberty [1]. However, it is now recognized that the phenotype is far more complex [2]. The broad phenotypic spectrum can make MAS a challenging disorder for clinicians. However, taking a systematic approach that considers MAS in its context as a mosaic, multisystemic disorder can provide clarity in the diagnosis and management of this interesting disease.
Pathogenesis

MAS arises from activating mutations in GNAS, which encodes the α-subunit of the Gαs G-coupled protein receptor [3]. These mutations lead to loss of the α-subunit’s intrinsic GTPase activity, leading to constitutive receptor activation and inappropriate cAMP production. Arg201 is a key component of the GTPase and the most common site of pathogenic mutations [4]. Greater than 95% of disease-causing missense mutations occur at the R201H and R201C positions; uncommonly mutations may occur at Q227 and other positions [5].

Mutations in MAS are somatic, occurring early in embryogenesis. The resulting phenotype is determined largely by the extent and location of mutation-bearing tissue. Consistent with mosaic disease, MAS is not inherited, and there are no known cases of vertical transmission. There are no known genetic or environmental risk factors, and disease appears to occur in all ethnic groups [2].

Constitutive, ligand-independent signaling through the LH, FSH, TSH, GHRH, and ACTH receptors results in the hyperfunctioning endocrinopathies characteristic of MAS [3]. In bone, constitutive Gαs activation impairs differentiation of skeletal stem cells, leading to replacement of normal bone and marrow with immature woven bone and fibrotic stroma [6] (Fig. 1d, e).

Fig. 1. Radiographic and histologic features of FD. a Axial CT with diffuse skull base FD. Note the characteristic homogeneous, “ground glass” appearance of FD bone. b Radiograph of the spine with scoliosis secondary to vertebral FD (white arrow). c Femoral FD with a classic varus (“shepherd’s crook”) deformity (white arrow). d, e FD histology: hematoxylin and eosin stain demonstrating classic curvilinear trabeculae and hypercellular fibrous stroma; (d) low-power view and (e) high-power view demonstrating signs of increased remodeling including Sharpey fibers (open arrows) and abundant osteoclasts (closed arrows).
Clinical Features

Fibrous Dysplasia

FD ranges from trivial monostotic disease affecting one bone, to debilitating polyostotic disease [7]. FD lesions can occur in isolation or in combination with additional features of MAS.

Clinical sequelae of FD in the appendicular skeleton arises due to FD’s tendency to fracture and deform under weight-bearing forces. Patients frequently present to care due to limp or pain [2]. The proximal femur is one of the most commonly involved sites and may develop a characteristic coxa vara (“shepherd’s crook”) deformity [8] (Fig. 1c). Fracture rates are highest during childhood and adolescence and steadily decrease into adulthood [9], potentially related to higher levels of FD activity in younger patients (discussed further below).

FD in the axial skeleton can result in scoliosis, which may be progressive and rarely lethal [10] (Fig. 1b). Scoliosis is associated with hip malalignment and leg length discrepancy, which contribute to ambulation difficulties [11, 12].

Craniofacial FD typically presents with a slow-growing, painless swelling, which may result in facial asymmetry [2] (Fig. 1a). Mild, asymptomatic craniofacial FD is often found incidentally on imaging studies such as dental radiographs and posttraumatic computed tomography scans [13]. In rare and severe cases, patients may experience pain, paresthesia, or functional deficits, such as malocclusion, hearing impairment, and/or visual disturbances [13–16] (Fig. 2e). Rarely, compression of the cerebellum and brainstem can develop in patients with skull base FD [17].

The natural history of FD includes typical age-related changes in disease progression and activity. In utero skel-
et al. 2022

Horm Res Paediatr
DOI: 10.1159/000504802

Girls are often clinically asymptomatic with undetectable estradiol levels and normal ultrasonographic findings, which may lead to delayed diagnoses. Ovarian torsion is an uncommon complication [25]. Autonomous ovarian activity persists into adulthood and is commonly associated with menometrorrhagia and fertility effects [25].

GNAS activation in the testes leads to Leydig and Sertoli cell hyperplasia, which presents clinically with macro-orchidism and ultrasonographic abnormalities, including focal masses, diffuse heterogeneity, and microlithiasis [26]. Testicular volume is therefore an inaccurate indicator of precocious puberty in boys with MAS. While approximately 85% of boys have testicular involvement, only 15% develop autonomous testosterone production, which presents with clinical signs of androgenization including pubic and axillary hair, penis enlargement, and growth acceleration [24, 26].

Secondary central puberty may develop as a complication of gonadotropin-independent puberty, typically at a bone age of 9 years or greater.

Thyroid

Thyroid abnormalities have been reported in approximately ~50% of patients with MAS, about half of whom develop frank hyperthyroidism [24, 27] (Fig. 2c,d). Clinical and ultrasonographic findings include diffuse enlargement, heterogeneity, and discrete cystic and solid nodules [27, 28]. Biochemically, GNAS mutations result in constitutive 5′-deiodinase activity, resulting in increased conversion of T4 to T3 and a primary T3 toxicosis [28]. Hyperthyroidism typically develops during childhood and persists throughout adulthood.

Pituitary

GNAS activation in the pituitary results in somatolactotrophi hyperplasia, leading to constitutive growth hormone (GH) and prolactin production in approximately 15% of patients [2, 24]. The most common clinical sign is expansion of craniofacial FD, which is particularly sensitive to the effects of GH [29] (Fig. 2e,f). Symptoms may include progressive macrocephaly, vision loss, and hearing loss, all of which may signal the presence of GH secretion abnormalities, even in the absence of frankly elevated IGF-1 levels [14, 29]. Other manifestations include acromegalic features and the development of secondary pituitary hormone insufficiencies [30]. While growth acceleration and tall stature may suggest the presence of GH excess, this is not a consistent finding in patients with MAS because linear growth is often confounded by skel-
et al. deformities and other endocrinopathies. GH excess is diagnosed by IGF-1, oral glucose tolerance test, and/or overnight GH sampling; most patients also demonstrate concomitant mild elevations in prolactin.

Neonatal Hypercortisolism

Hypercortisolism is one of the rarest and most serious complications of MAS [24]. It arises due to GNAS activation in the fetal adrenal gland and presents exclusively during the first year of life [31, 32]. Infants are often born small for gestational age and can develop failure to thrive, feeding problems, Cushingoid features, hypertension, respiratory disease, or other signs of illness [33]. Symptoms can be insidious and nonspecific, which may lead to delayed diagnoses [31]. Adrenalectomy may be life saving for severely affected patients; however, medical therapy is an option for patients who are either mildly affected or too unstable for surgery. Hypercortisolism may spontaneously resolve in up to 1/3 of patients, likely due to involution of the fetal adrenal gland [31, 32]. Long-term sequelae of neonatal hypercortisolism include neurodevelopmental effects [31] and late-onset adrenal insufficiency after spontaneous resolution [2].

Evaluation and Management

Diagnostic Criteria

The diagnosis of MAS is most often made clinically, based on 2 or more characteristic features (Table 1) [2, 34]. Mutation detection is variable and depends upon the level of mosaicism in the tissue being tested and the sensitivity of the technique [2]. PCR-based sequencing methods have mutation detection rates of >80% in lesional tissue and ~20–30% in peripheral blood lymphocytes [35–37]. While detection of a pathogenic GNAS mutation may be helpful in establishing the diagnosis, a negative result does not rule out FD/MAS; mutation testing therefore does not typically affect management in patients with established clinical diagnoses.

Fibrous Dysplasia

By age 5 years, 90% of clinically significant FD can be identified in some form on bone scintigraphy; for this reason, a staging scintigraphy scan at this age is recommended for all patients with known or suspected FD/MAS [18, 34]. Depending on the identified areas of involvement, additional imaging with radiographs or computed tomography may be indicated to better characterize individual lesions. No medical treatments have been shown to affect the quality or progression of FD lesions; therefore, clinical management focuses on optimizing function and mitigating risk factors that contribute to skeletal morbidity.

Management of appendicular FD focuses on correcting and preventing deformities and fractures [38]. Proximal femoral (“shepherd’s crook”) deformities are particularly challenging, especially in young children where surgical options are limited by small size and skeletal growth (Fig. 1c). Techniques commonly used in other conditions, such as curettage and grafting, have limited utility in patients with extensive FD involvement [39]. Surgical approaches must therefore be individualized to account for the challenges and needs of each patient [38, 40].

Patients with craniofacial FD require a baseline head computed tomography scan to assess the affected structures [2, 34] (Fig. 1a) and should undergo annual evaluations by a neuro-ophthalmologist and otolaryngologist to monitor for vision and hearing impairment [14, 29]. Optic neuropathy is uncommon even in patients with FD involving the optic canals; prophylactic optic nerve decompression is therefore not indicated and has been associated with an increased risk of blindness [16, 41]. Patients should be monitored for symptoms associated with cranial base deformities such as basilar invagination and Chiari I malformation [17]. Consistent dental care should be prioritized for patients with FD affecting the teeth.

Table 1. Diagnostic criteria for FD/MAS

<table>
<thead>
<tr>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrous dysplasia of bone²</td>
</tr>
<tr>
<td>Café-au-lait skin pigmentation with characteristic features³</td>
</tr>
<tr>
<td>Gonadotropin-independent precocious puberty resulting from recurrent ovarian cysts in girls and autonomous testosterone production in boys</td>
</tr>
<tr>
<td>Testicular lesions with or without associated gonadotropin-independent precocious puberty</td>
</tr>
<tr>
<td>Thyroid lesions with or without nonautoimmune hyperthyroidism</td>
</tr>
<tr>
<td>Growth hormone excess</td>
</tr>
<tr>
<td>Neonatal hypercortisolism</td>
</tr>
</tbody>
</table>

¹ Two or more clinical features are consistent with the diagnosis of FD/MAS. ² The presence of an isolated monostotic lesion in the absence of extraskeletal features requires a biopsy for diagnostic certainty. ³ Hyperpigmentation with irregular borders, distribution reflecting the midline of the body. MAS, McCune-Albright syndrome; FD, fibrous dysplasia.
bearing bones, who can uncommonly develop complications such as periodontal disease and malocclusion [13]. Outcomes from craniofacial surgery are often unsatisfactory due to high risk of postoperative FD regrowth, particularly in patients with GH excess [42]. Surgical indications should therefore be limited to correction of functional impairment and severe, disabling deformity.

Severe and progressive scoliosis can typically be managed with spinal fusion, which often shows favorable outcomes in FD [12]. Regular physiatric care to optimize gait and alignment, including orthoses to correct leg length discrepancies, is an important component of management that may mitigate progression of scoliosis and other deformities [11, 12].

Pain is a common feature in FD, affecting approximately 80% of patients [43]. The occurrence and severity of FD pain appear to increase with age, counter to the typical age-related decrease in FD activity [44]. Pain levels do not correlate with skeletal disease burden [44]. FD pain can be treated medically with oral analgesic medications and supportive measures, and intravenous bisphosphonates may be helpful for patients with persistent, moderate to severe pain [34, 43]. Despite their likely analgesic effects, bisphosphonates have not been demonstrated to improve bone quality or prevent FD lesion expansion [45–47]. Concerningly, osteonecrosis of the jaw has been reported in association with bisphosphonate treatment in FD [48]; therefore, it is recommended that bisphosphonates be limited to treatment of FD-related pain, using the lowest effective dose and interval [34].

Evaluation and treatment of MAS endocrinopathies (Table 2) is a key component of management in FD, because uncontrolled endocrinopathies contribute to skeletal morbidity. GH excess fuels craniofacial FD expansion, leading to increased risk for vision loss [29], hearing loss [14], and postoperative FD regrowth [42]. Hypophosphatemia and hyperthyroidism increase risk of fractures, deformities, and pain, likely through metabolic effects that further decrease the mechanical stability of FD bone [9, 12, 14, 17]. Patients with polyostotic FD should have serum phosphorus levels monitored regularly, with a low threshold for intervention with vitamin D analogues and phosphorus supplementation. Dosing is similar to X-linked hypophosphatemia, a more common disorder of FGF23 excess [49]. Burosumab, a monoclonal antibody to FGF23 approved for treatment of X-linked hypophosphatemia, has not yet been studied in FD but holds promise as a potential therapy [50].

Table 2. Medications commonly used in treatment of MAS

<table>
<thead>
<tr>
<th>Indication</th>
<th>Medication</th>
<th>Mechanism of action</th>
<th>Potential adverse effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precocious puberty</td>
<td>Letrozole</td>
<td>Aromatase inhibitor</td>
<td>Transient transaminemia</td>
</tr>
<tr>
<td>Hyperthyroidism</td>
<td>Methimazole</td>
<td>Thyroperoxidase inhibitor</td>
<td>Hepatotoxicity, agranulocytosis</td>
</tr>
<tr>
<td></td>
<td>Propylthiouracil</td>
<td>Inhibits thyroperoxidase and 5'-deiodinase</td>
<td>Hepatotoxicity, agranulocytosis</td>
</tr>
<tr>
<td>GH excess</td>
<td>Octreotide; Lanreotide Pegvisomant</td>
<td>Somatostatin analog, GH receptor antagonist</td>
<td>Cholelithiasis, hepatotoxicity, Hepatotoxicity</td>
</tr>
<tr>
<td>Neonatal hypercortisolism</td>
<td>Metyrapone</td>
<td>11-Beta-hydroxylase inhibitor</td>
<td>Hirsutism, hypertension, hyperkalemia, Hepatotoxicity, hypogonadism</td>
</tr>
<tr>
<td></td>
<td>Ketoconazole</td>
<td>Inhibits cortisol synthesis</td>
<td></td>
</tr>
<tr>
<td>FGF23-mediated hypophosphatemia</td>
<td>Calcitriol; alfacalcidol</td>
<td>Increases dietary calcium absorption and renal tubular calcium reabsorption</td>
<td>Hypercalciuria, hypercalcaemia</td>
</tr>
<tr>
<td></td>
<td>Phosphorus</td>
<td>Supplemental</td>
<td>Gastrointestinal effects</td>
</tr>
</tbody>
</table>

FGF23, fibroblast growth factor 23; GH, growth hormone; MAS, McCune-Albright syndrome.
zole, which is effective in decreasing frequency of vaginal bleeding and improving final adult height [51]. If letrozole monotherapy is ineffective, estrogen receptor modulators such as tamoxifen and fulvestrant may be considered [52, 53]. Boys with precocious puberty are treated with testosterone receptor blockers, such as bicalutamide or spironolactone, used in combination with an aromatase inhibitor to prevent bone age advancement [26]. Children may require GnRH agonists therapy in addition to these blocking agents for treatment of secondary central precocious puberty [26, 51]. Management of menometorrhagia may include use of progesterin-containing intrauterine devices or oral contraceptive pills [25]. Pregnancy is likely achievable and safe in women with MAS; however, ovarian disease may make conception more challenging, and clinicians should have a low threshold to refer patients desiring pregnancy to fertility specialists [25].

Hyperthyroidism typically responds to antithyroidal medications for short-term management. Most patients ultimately elect for definitive treatment, which is ideally achieved through thyroidectomy at an experienced, high-volume surgical center [2]. Radioablation is also effective and may be preferred in patients who present surgical risks, or who don’t have access to sufficiently experienced centers. However, clinicians should be aware of the theoretical risk of subtherapeutic radiation exposure to adjacent unaffected tissue given the patchy, mosaic nature of thyroid involvement [27, 34].

Patients with GH excess are typically treated medically with somatostatin analogues, used alone or in combination with GH receptor blockers [34, 54]. Because craniofacial FD is particularly susceptible to the effects of GH, aggressive management is preferred, with the goal of decreasing IGF-1 between −2 and +1 standard deviations for children, and as low as possible for adults [2, 34, 54, 55]. Hyperprolactinemia in MAS is typically mild; however, patients with symptoms such as galactorrhea or central hypogonadism generally respond well to dopamine agonists such as cabergoline. Pituitary involvement is typically diffuse, even if discrete adenomas are visible on magnetic resonance imaging [54, 56]. For this reason, surgical treatment typically requires total hypophysectomy, and is generally reserved for patients who are uncontrolled with maximal medical therapy. Surgery is often technically difficult due to FD involvement in the skull base [56]. The presence of skull base FD also complicates radiation treatment, which has been associated with somnolent transformation in this area and should be reserved for final recourse in patients with severe, disabling disease [34, 54].

Other Manifestations

Gastrointestinal

MAS may be associated with a broad spectrum of gastrointestinal disease. Neonatal cholestasis and hepatitis have been reported in infants [57], and a variety of hepatobiliary abnormalities have been reported in adults, including hepatocellular adenomas, choledochal cysts, and inflammatory adenomas [58, 59]. Gastric polyps may be asymptomatic or associated with symptoms of reflux [60, 61]. Activating GNAS mutations are known drivers for the development of intraductal papillary mucinous neoplasms (IPMNs) [62]. These pancreatic cysts have been reported in up to 40% of patients with MAS and have rarely been associated with obstructive pancreatitis and diabetes [58, 60, 63]. Gastrointestinal evaluation, including pancreatic imaging, should therefore be considered in all symptomatic patients [2, 34, 63]. Although IPMNs are considered a potentially premalignant lesion in the general population, the risk of pancreatic adenocarcinoma in patients with MAS appears to be low, with only one reported case [64]. It is unknown if IPMNs associated with MAS are truly at lower risk compared to the general population, or if the malignant potential of IPMNs is lower than previously thought [65].

Bone Marrow and Hematologic

Bone marrow failure with pancytopenia and extramedullary hematopoiesis have been rarely reported in patients with severe FD [66, 67]. The etiology is not well-established but may be related to reduced marrow capacity in conjunction with splenic sequestration, and patients have clinically improved after splenectomy [66, 67]. Platelet dysfunction has also been reported in association with MAS [68], which together with the hypervascularity of FD lesions may contribute to blood loss with orthopedic procedures.

Malignancy

GNAS mutations are weak oncogenes, and in the general population have been associated with thyroid adenomas, pituitary adenomas, and IPMNs [69]. An increased risk of breast cancer has been identified in patients with MAS, and early screening with mammography is recommended for patients with polyostotic FD and ovarian involvement [70]. Malignant transformation of FD has also been reported, particularly in patients exposed to external beam radiation [54, 71]. Patients typically present with new-onset pain and/or rapid expansion in a previously inactive lesion, which radiographically may show expan-
sion through the bony cortex. This should be distin-
guished from fluid-filled aneurysmal bone cysts, which
also arise acutely and expand rapidly within FD bone. The
prevalence of malignant transformation in FD has not
been determined; however, it is likely low and has been
observed in only 2/250 patients in the NIH cohort (un-
published observation, AMB & MTC). Other malignan-
cies reported in association with MAS include thyroid
[72], testicular [26], pancreatic [64], and hepatoblastoma
[57].

Future Directions

Identifying treatments capable of altering FD lesion
activity is a high priority for clinical and translational re-
search. The recent development of several mouse models
represents an important advance that may be used to
identify and test novel therapeutic targets [73–75]. An-
other ongoing strategy is high-throughput screening to
identify molecules with activity at the mutant Gαs-
receptor [76]. Recent evidence suggests denosumab, a
monoclonal antibody to receptor activator of nuclear-B
kappa ligand, may be effective in treating pain and slow-
ning FD lesion expansion [77, 78]. However, concerningly,
denosumab discontinuation has been associated with se-
vere, life-threatening hypercalcemia in patients with FD
[77], and further research is needed to determine if and
how denosumab can be used safely in this population.

Disclosure Statement

NIDCR receives funding from Amgen, Inc., for an investigator
sponsored study of denosumab treatment for FD.

Funding Sources

This work was funded by the Intramural Research Program of the
National Institute of Dental and Craniofacial Research, Na-
tional Institutes of Health.

Author Contributions

T.S., K.S.P, and A.M.B.: drafted the manuscript. M.T.C.
and A.M.B. edited the manuscript, all authors approved the final
version of the manuscript.

References

1 McCune DJ. Osteitis fibrosa cystica: the case of a nine year old girl who also exhibits precoc-
2 Boyce MT, Florenzano P, de Castro LF, Coll-
istered trademark of the University of Washington, Seattle. All rights reserved; 1993.
3 Weinstein LS, Shenker A, Geiman PV, Meri-
no MJ, Friedman E, Spiegel AM. Activating
4 Turan S, Bastepe M. GNAs Spectrum of Dis-
5 Robinson C, Collins MT, Boyce AM. Fibrous Dysplasia/McCune-Albright Syndrome: Clini-
6 Riminucci M, Liu B, Corsi A, Shenker A, Spie-
gel AM, Robey PG, et al. The histopathology of fibrous dysplasia of bone in patients with
activating mutations of the Gαs gene: site-
7 Boyce AM, Collins MT. Fibrous Dysplasia/
8 Ippolito E, Farsetti P, Boyce AM, Corsi A,
De Maio F, Collins MT. Radiographic clas-
sification of coronal plane femoral deformi-
67.
9 Leet AL, Chehbi C, Kushner H, Chen CC, Kel-
ly MH, Brillante BA, et al. Fracture incidence
10 Berglund JA, Tella SH, Tuthill KF, Kim L, Guthrie LC, Paul SM, et al. Scoliosis in Fi-
brous Dysplasia/McCune-Albright Syn-
drome: Factors Associated With Curve Progression and Effects of Bisphospho-
11 Paul SM, Gabor LR, Rudzinski S, Giovannini D,
Boyce AM, Kelly MR, et al. Disease severity and functional factors associated with walk-
ning performance in polyostotic fibrous dys-
12 Berglund JA, Tella SH, Tuthill KF, Kim L,
Guthrie LC, Paul SM, et al. Scoliosis in Fibrous Dysplasia/McCune-Albright Syndrome: Fac-
13 Burke AB, Collins MT, Boyce AM. Fibrous
dysplasia of bone: craniofacial and dental im-
14 Boyce AM, Brewer C, DeKlotz TR, Zalewski
CK, King KA, Collins MT, et al. Association of Hearing Loss and Otologic Outcomes With
15 DeKlotz TR, Kim HJ, Kelly M, Collins MT. Sinonasal disease in polyostotic fibrous dys-
plasia and McCune-Albright Syndrome. La-
16 Amit M, Collins MT, FitzGibbon EJ, Butman
JA, Fliss DM, Gil Z. Surgery versus watchful
6(9):e25179.
17 Pan KS, Heiss JD, Brown SM, Collins MT,
Boyce AM. Chiari I Malformation and Basilar
Invagination in Fibrous Dysplasia: Preva-
ience, Mechanisms, and Clinical Implica-
18 Hart ES, Kelly MH, Brillante B, Chen CC,
Ziran N, Lee JS, et al. Onset, progression, and
plateau of skeletal lesions in fibrous dys-
plasia and the relationship to functional out-
come. J Bone Miner Res. 2007 Sep;22(9): 1468–74.

