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Abstract
Background: The 2019 Science for Dialysis Meeting at Bell-
vitge University Hospital was devoted to the challenges and 
opportunities posed by the use of data science to facilitate 
precision and personalized medicine in nephrology, and to 
describe new approaches and technologies. The meeting in-
cluded separate sections for issues in data collection and data 
analysis. As part of data collection, we presented the institu-
tional ARGOS e-health project, which provides a common 
model for the standardization of clinical practice. We also pay 
specific attention to the way in which randomized controlled 
trials offer data that may be critical to decision-making in the 
real world. The opportunities of open source software (OSS) 
for data science in clinical practice were also discussed. Sum-
mary: Precision medicine aims to provide the right treatment 
for the right patients at the right time and is deeply connect-
ed to data science. Dialysis patients are highly dependent on 
technology to live, and their treatment generates a huge vol-
ume of data that has to be analysed. Data science has emerged 

as a tool to provide an integrated approach to data collec-
tion, storage, cleaning, processing, analysis, and interpreta-
tion from potentially large volumes of information. This is 
meant to be a perspective article about data science based 
on the experience of the experts invited to the Science for 
Dialysis Meeting and provides an up-to-date perspective of 
the potential of data science in kidney disease and dialysis. 
Key messages: Healthcare is quickly becoming data-depen-
dent, and data science is a discipline that holds the promise 
of contributing to the development of personalized medi-
cine, although nephrology still lags behind in this process. 
The key idea is to ensure that data will guide medical deci-
sions based on individual patient characteristics rather than 
on averages over a whole population usually based on ran-
domized controlled trials that excluded kidney disease pa-
tients. Furthermore, there is increasing interest in obtaining 
data about the effectiveness of available treatments in cur-
rent patient care based on pragmatic clinical trials. The use of 
data science in this context is becoming increasingly feasible 
in part thanks to the swift developments in OSS. 
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Introduction

Computerization and digitalization are a wave that has 
swept, in a very short period of time, not only human la-
bour at large but also all areas of science. In the intersec-
tion of both, healthcare is a paramount example of this 
phenomenon, which is radically altering the way medical 
care is dealt with and provided. At least part of the chal-
lenges faced by the healthcare sector have, therefore, be-
come computer science-related problems, including 
medical data analysis beyond statistics using, for instance, 
machine learning (ML) and artificial intelligence (AI) 
methods [1]. The latter involves all sorts of novel social 
implications, including interrelated issues such as com-
pliance with legislation, ethics and fairness, privacy and 
anonymity, as well as interpretability and explainability, 
to name a few [2].

An aspect of this phenomenon is that healthcare is 
quickly becoming a data-dependent endeavour, in a pro-
cess that involves digital networks, fast advances in med-
ical data acquisition methods, and the widespread adop-
tion of electronic medical records (EMRs) [3]. These 
changes do not come about without their share of pain, 
as reported, for instance, in Ash et al. [4]. In the case of 
physicians who must routinely use EMRs, it could take 
the form of report content impoverishment, reduction of 
personal engagement with patients, or even de-skilling 
[5]. This goes beyond the classical difficulties and barri-
ers that are to be found in the introduction of any new 
technology. Networked computerization, together with 
the datafication of medical science and practice, signifies 
a systematic shift in procedures and protocols at all levels 
of medical practice. The fact that medicine and health-
care are adopting computer science innovations also 
means they necessarily lag behind current practice in the 
latter.

Health data have dramatically increased in quantity 
and complexity over the last decade. Data science, as a 
compound area of expertise, has begun to be used in cur-
rent clinical practice to extract knowledge and insights to 
guide individualized patient care from the available quan-
titative and qualitative information. This process of health 
datafication, part of the big data phenomenon, is fuelling 
a “Precision and Personalized Medicine” revolution that 
promises to improve diagnosis, risk assessment, and 
treatment of multiple diseases, so far mainly in oncology 
and cardiology. However, nephrology still lags behind in 
this process [3], despite the fact that some advances have 
been achieved in the application of data science and AI in 
the field [1]. A recent and very publicized example of this 

is a deep-learning artificial neural network model for 
continuous risk prediction of acute kidney injury (AKI), 
based on a large, longitudinal dataset of electronic health 
records (EHRs), presented in Nature [6]. The proposed 
model was a recurrent neural network that operates se-
quentially over EHRs, processing the data one step at a 
time and building an internal memory that keeps track of 
relevant information available up to that point. At each 
time point, the model outputs a probability of AKI occur-
ring at any stage of severity within the next 48 h. The 
model predicts 55.8% of all inpatients’ episodes of AKI 
and 90.2% of all AKIs that requires dialysis, with a lead 
time of up to 48 h and a ratio of 2 false alerts for every true 
alert. AI-based decision support systems have also been 
used, for instance, to recommend suitable erythropoiesis-
stimulating agent doses for optimizing anaemia manage-
ment in haemodialysis patients [7] and to guide the man-
agement of blood pressure, fluid volume, and dialysis 
dose [8].

This brief study aimed to outline and provide some 
perspective on some relevant topics regarding the use of 
data science, ML, and AI as tools for personalized haemo-
dialysis. With this aim, we follow a thread that starts con-
sidering the problem of data collection, including an ex-
ample of practical use of data science for the design of 
pragmatic clinical trials, and continues with topics on 
data storage and analysis. It also discusses the issue of 
open source software (OSS) for data collection and analy-
sis in the area.

As mentioned in the abstract, the article reports the 
contents of the 2019 Science for Dialysis Meeting at Bell-
vitge University Hospital in Barcelona, Spain, which was 
divided into different parts, loosely related to areas in data 
science (often characterized as the triad of (1) data collec-
tion, (2) data modelling and analysis, and (3) interpreta-
tion-oriented tools to extract actionable knowledge suit-
able to support complex decision-making). Therefore, it 
does not intend to be a review of the field, but to provide 
an up-to-date comprehensive perspective of the potential 
of data science in kidney disease and dialysis.

Advances in Data Collection and Storage

E-Health and Remote Health Models for Dialysis 
Units: The Nephrologist’s Point of View
Advances in the field of information management are 

quickly opening multiple opportunities for development 
in the health sciences. The application of new technolo-
gies in the specific field of treatment of advanced CKD 
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offers many advantages at multiple levels. First, the ne-
phrologist has access to intuitive software and interfaces 
that are fully connected to the different treatments and 
monitoring devices that instantly transmit physiological 
data (blood pressure, weight, and heart rate) and treat-
ment information, allowing for a centralization of the in-
formation and an updated integration with the hospital 
medical information systems [9, 10]. This setting should 
contribute to a much more precise and personalized ser-
vice [11], but only if the possibilities presented by data 
availability are properly leveraged. Second, clinical man-
agers have access to tools that allow them monitoring re-
sources (both human and material), clinical and produc-
tivity indicators, in order to increase efficiency and im-
prove assistance quality and distribution of resources. 
Finally, tools of e-health, m-health, and tele-health pro-
vide patients and their environment with plenty of re-
sources for the understanding of their illness, self-care, 
and, in some cases, self-treatment [12]. Nephrologists 
should be aware of these advances and play a leading role 
in their development, without forgetting, in many cases, 
to continue applying evidence-based medicine with med-
ical responsibility and ethics.

Nephrologists must be aware that data science, as dis-
cussed in the following sections, goes beyond quantitative 
data to embrace the true diversity and complexity of 
available medical information. Much of this information 
is currently structured in the form of EHRs, which pro-
vide opportunities to enhance patient care and improve 
the identification, and are increasingly being used for re-
search, beyond the primary purpose for which they were 
collected [13]. They may assist in the assessment of 
whether new treatments or innovation in healthcare de-
livery result in improved outcomes or healthcare savings. 
In addition, clinical managers have access to tools that 
allow them to monitor resources (both human and mate-
rial), clinical and productivity indicators, in order to in-
crease efficiency and improve assistance quality and dis-
tribution of resources.

The ARGOS Project in E-Health: A Path towards 
Standardization of Clinical Practice
Health professionals have always collected informa-

tion in order to improve clinical care and to be able to 
learn about diseases. The current shift from traditional 
medical records to EMRs is profoundly transforming the 
way we can analyse this information. Fifteen years ago, 
the Catalan Health Institute started the ARGOS institu-
tional project in Catalonia, Spain: a new system of clinical 
information management in hospitals. One of the great 

difficulties that was faced at the onset was how to replicate 
in digital format what the medical doctors did on paper. 
Nowadays, with professionals already accustomed to 
healthcare electronics and with the accumulated experi-
ence, a vast universe of possibilities opens to show, col-
lect, and analyse the data resulting from medical care. 
From the traditional clinical workstation (CWS), we are 
moving towards CWSs oriented to specific processes and 
pathologies, where the information is displayed intelli-
gently, accompanying the needs of professionals always. 
To help achieve this goal, the ARGOS project has built a 
clinical dictionary, where variables are always defined in 
a structured way so that they can be used in any form that 
requires the assistance and treatment of patients and dif-
ferent pathologies [14, 15].

Each variable is unique, correctly defined, and coded 
using international standards (SNOMED CT  [System-
atized Nomenclature of Medicine-Clinical Terms] and 
LOINC  [Logical Observation Identifiers Names and 
Codes]) and national standards (Spanish Society of Med-
ical Radiology (SERAM) and Spanish Society of Nuclear 
Medicine and Molecular Imaging (SEMNiM) that will 
then allow technical and semantic interoperability be-
tween systems. The forms are sets of variables that can be 
used uniquely or incorporated into previously defined 
care processes, which include workflows of professionals 
and the predetermined rules linked to algorithms that fa-
cilitate clinical management.

The use of rules within the processes has allowed ex-
perts to use automatisms able to construct clinical notes 
and reports derived from each assistance act and facili-
tate the daily work of doctors and other clinical profes-
sionals. All these variables may come from any source: 
laboratories, pharmacy, medical monitoring equipment, 
clinical records, and others. Moreover, they will be stored 
in a MongoDB database type from where we can retrieve 
information either for clinical assistance or for analysis 
in research tasks. Having all this structured and accessi-
ble information allows healthcare professionals to ex-
ploit it at any level, to facilitate assistance, research, and 
teaching, while opening the doors to the use of AI with 
methods from ML or deep learning, for instance. These 
tools will be useful for healthcare system users, in a pro-
cess-oriented manner, prioritizing prevention and based 
on the scientific evidence available at all time. After more 
than 10 years of working with the electronic clinical re-
port, this is already a way of no return, which improves 
medical practice and the quality of care received by citi-
zens.
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Pragmatic Randomized Controlled Trials: A Way to 
Transform Data into Evidence
Pragmatic randomized controlled trials (pRCTs), as 

compared to explanatory controlled trials, are meant to 
focus more on possible correlations between data of treat-
ments and their outcomes in real-world healthcare than 
on investigating causal explanations for outcomes. Inter-
estingly, this is not unlike the data science approaches to 
knowledge discovery as compared to more traditional 
statistical approaches. This similarity makes pRCT an in-
teresting and barely frequented research field for data sci-
entists. The latter should consider the concept of real-
world data, also referred to as real-world evidence, de-
scribed by Gibert et al. [16] as providing patient-level data 
gathered outside the conventional clinical trial setting, 
including pRCT.

Current medicine lacks enough comparative effective-
ness research of marketed medicines. Although there are 
a number of scientific approaches to address this issue, 
the only one that could offer a cause-effect comparative 
assessment is the randomized controlled trial (RCT), and 
most specifically the pRCT. These are trials conducted 
resembling usual clinical practice, aiming to assess the ef-
fectiveness of marketed medicines that are prescribed and 
managed as in normal clinical practice, and that will pro-
vide results that will be generalizable to other settings. 
pRCTs that pose no or minimal incremental risk com-
pared with usual clinical practice are named “low-risk 
pRCTs” [17] or “low-intervention trials” in the EU clini-
cal trials regulation [18]. These trials are of critical rele-
vance to public health since they provide ready-to-use in-
formation on the comparative effectiveness of the as-
sessed medicines.

Research has shown that pRCTs with medicines are 
rarely conducted [19]. One of the main reasons for this is 
that pRCTs must follow all the ethical and administrative 
requirements that the EU regulation asks for all types of 
trials, such as pre-licensing RCTs [18]. One of the most 
relevant hurdles is the need to seek participants’ written 
informed consent. Recent developments regarding the 
informed consent hurdle could dramatically change the 
current situation.

The 2016 CIOMS (Council for International Organi-
zations of Medical Sciences) ethical guidelines consider 
what type of human research could be conducted with a 
modification or waiver of participants’ informed consent 
[20]. Thus, any research fulfilling three provisions and 
that is approved by the relevant research ethics commit-
tee could be conducted without participants’ consent. 
The 3 provisions are as follows [20]: (a) the research 

would not be feasible or practicable to carry out without 
the waiver or modification, (b) the research has impor-
tant social value, and (c) the research poses no more than 
minimal risks to participants. It is clear that these provi-
sions are applicable to low-risk pRCTs [21]. But not all 
low-risk pRCTs could be candidates to fulfil the CIOMS 
provisions: first trials must show a high degree of prag-
matism that will ensure the generalizability of the results 
obtained [19, 21], something that is uncommon, even 
among those RCTs self-tagged as pragmatic [22]. The 
best way to assess the degree of pragmatism of an RCT is 
by using specific tools such as the PRECIS-2 tool [23], 
which considers nine domains – from the eligibility of 
participants to the statistical analysis, to be individually 
assessed.

To ascertain how many RCTs could be candidates for 
the modification or waiver of participants’ informed con-
sent, a research was conducted on the EU-clinical trials 
register database of all phase 4 RCTs that were “ongoing” 
in July 2016 to June 2018. From 420 RCTs, only 21 could 
be candidates to fulfil the CIOMS provisions, and only 8 
(out of 15 that responded to our questionnaires) fulfilled 
them following the assessment of the investigators and, 
with inconsistent results, of members of research ethics 
committees and patients [24]. This type of RCT will be 
eased if the EU Commission amends the regulation to al-
low the conduct of those low-risk pRCTs that fulfil the 
three CIOMS provisions [21].

pRCTs could pose a number of difficulties in their con-
duct due to the high number of participants that some of 
them need to answer the research questions. This also im-
plies that the number of sites and investigators could be 
substantial, hence increasing its complexity from the op-
erational perspective. An alternative to this type of trial is 
the conduct of an observational research by means of rou-
tinely collected data (RCD), such as that obtained from 
EHRs. Recent research shows, however, that 68% of RCD 
assessing the comparative effectiveness of interventions 
were previously compared in RCTs – many of them not 
assessing the effects in the real world – so they did not 
provide fundamentally novel research results [25]. There-
fore, research conducted with RCD to add completely 
new information is not common. It would be reasonable 
to encourage the conduct of research based on RCD to 
answer those questions for which pRCTs would be unfea-
sible or impractical.

Data Storage
Data generated by EMRs, including unstructured data, 

Internet of things, and imaging records, are estimated to 
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be about 150 exabytes (DGB = DEB × 1,0243) and keep 
growing at exponential levels, quadrupling every 2–3 
years [26], which entails the risk of overflowing the health-
care system. These big data must be saved for diagnostic 
activities, regulatory compliance, coverage, or clinical re-
search, and up to 92% are stored on hard disk drives. Thus, 
data storage requirements are a key point, since we have 
to ensure that data are stored securely and efficiently and 
are quickly accessible. The cloud offers the only viable so-
lution for the out-of-control growth of healthcare indus-
try data. However, up to 80% of healthcare data are “dark” 
because they are spread across numerous single-point re-
positories and cannot be easily managed, searched, or ex-
ported for analysis (medical or administrative), regulatory 
request, or e-discovery [27]. In addition, most EHR stor-
age is in the hands of private tech companies, such as, for 
instance, Microsoft Azure or Amazon Web Services, but 
there is an increasing interest in using public cloud sys-
tems that can scale rapidly and efficiently. IBM’s high-per-
formance data and AI (HPDA) architecture based on stor-
age and software-defined storage for healthcare has been 
developed for cloud-scale data management, multi-cloud 
workload orchestration, and converged high-perfor-
mance computing with deep learning.

A fundamental need in storing clinical data is to make 
them accessible to those performing the analysis and, at 
the same time, guarantee patients’ privacy. For larger sys-
tematic analyses, cryptographic techniques are being de-
veloped. Alternatively, the so-called virtualization tech-
nologies allow scientists to submit their analytical tools to 
be available remotely on a server, enabling analyses to be 
performed without having to share the actual data.

In the field of dialysis, the Fresenius company has de-
veloped the Therapy Data Management System (TDMS) 
for supporting users in daily tasks and the Therapy Sup-
port Suite central clinical management for supporting us-
ers in carrying out analyses, creating and managing pa-
tient prescription, developing medication plans, and doc-
umenting treatment data and patient-related laboratory 
data. In addition, the TDMS provides enhanced reporting 
capabilities and allows for the professional management 
of a group of dialysis centres [28].

Data Analysis

Data Analytics and Computational Tools for Kidney 
Diseases and Dialysis
Haemodialysis therapy generates large-scale data 

from electronics, mechanics, physics, chemistry, or 

physiology to assess the quality of the current treat-
ment. Up-to-date data from the extracorporeal circuit 
(air detector, arterial and venous blood pump, substitu-
tion fluid pump, blood pressure, and blood volume) 
and the hydraulic circuit (dialysis fluid flow rate, tem-
perature, conductivity, transmembrane pressure, blood 
leak detector, ultrafiltration rate, and dialysis dose) are 
recorded. For example, the DBB-EXA dialysis machine 
(Nikkiso Co.) generates 87 data values every 30 s and 
41,756 clinically relevant data values over each 4-h-long 
dialysis session. A monitor connected via ethernet (net-
work connection) sends the information in NoSQL 
(non-structured query language) to the data processing 
centre or a cloud computing platform. In addition, the 
introduction of potent computational platforms is able 
to link these data with other sources of data (e.g., health 
environmental records, biomedical research databases, 
genome sequencing databanks, pathology laboratories, 
or mobile Internet of things). To manage and analyse 
this enormous amount of data, we need to employ data 
science analytics, which provides theory and methods 
combining mathematics, statistics, AI, computer sci-
ence, optimization, data visualization, and information 
science [29].

As described in the previous section, data collection is 
the key component of any data science project, since the 
quality of the knowledge extracted by a data mining pro-
cess is dependent on the quality and suitability of data. 
Factors such as missing values and inconsistent, redun-
dant, erroneous, or needless data have a high impact and 
lead to low-quality knowledge. This means that an essen-
tial stage to consider is data preprocessing. Thus, to ex-
tract information from data, we first need to process, ex-
amine, clean, verify for quality, and normalize each type 
of data before any further analysis. This process involved 
several steps: (1) deletion of any duplicate data that might 
appear within the data set, (2) resolution of any conflict-
ing data, and (3) conversion of data into a format for fur-
ther processing and analysis. However, the quality and 
accuracy of such data, and issues on how to harmonize 
data arriving from different sources so as to provide a 
comparable view from different studies are still in need of 
improvement. An overview of the use of big data in renal 
diseases has been recently reviewed in Saez-Rodriguez et 
al. [3].

Once a quality data set has been established, a data 
model needs to be identified. A data model is a represen-
tation of the data and their relationships, obtained by ap-
plying certain formal techniques, and can be understood 
at 3 levels: descriptive, predictive, and prescriptive. The 
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process of designing a data model begins with the iden-
tification of the necessary data and the relationships 
among components of that data. The structure of a data 
model can be described in different forms, such as a re-
lational model, an object-oriented model, or a hierarchi-
cal structure. There are many data modelling techniques 
and also many open source tools that can be used to fa-
cilitate the design of a data model. The choice of the op-
timal algorithm depends on a variety of factors that in-
clude, but are not limited to, data type/learning approach 
(supervised or unsupervised learning), the importance of 
accuracy in the chosen model, the need for speed in data 
analysis, the data analysed, the size of the data set, the 
need for hierarchical output, or the need for categorical 
variables [30].

Complex computational methods based on ML tech-
niques are also increasingly been applied to biomedical 
data to identify an optimal model, i.e., fully vetting the 
algorithms by building and testing multiple models for 
their appropriateness to the task. ML algorithms can be 
generally classified into three categories: (1) supervised 
learning, which uses training data to learn a function and 
which includes classification and regression approaches; 
(2) unsupervised learning, such as clustering algorithms; 
and (3) reinforcement learning. ML tools have been used 
as a screening tool to predict the progression of diabetic 
kidney disease [31] and to identify dialysis patients with 
high risk of death [32]. In addition, ML aids diagnosis for 
image processing in pathology, and laboratory medicine 
[33] and genomic data analysis [34].

Another data science approach to facilitate the inter-
pretation of complex data models entails the use of inter-
active visual interfaces in a discipline known as visual an-
alytics [35]. This approach could provide nephrologists 
with more effective ways to combine longitudinal clinical 
data with dialysis-generated health data to better under-
stand patient progression. In addition, patients could be 
supported in understanding health plans and comparing 
their health measurements with other patients. Visual an-
alytics systems have the potential to support intuitive 
analysis while masking the underlying complexity of the 
data. Using data science according to these ideas, ne-
phrologists have the opportunity to develop novel thera-
peutic tools for a personalized medicine targeting dialysis 
patients.

Whatever the methodology used to build up a clini-
cal prediction model, this requires a validation protocol 
that guarantees generalization of the results in the ap-
plication domain, taking into consideration that it can 
be different samples from a patient or a third-party 

population. In addition, whether the tool will be used 
to make treatment decisions should be evaluated as an 
intervention.

Data Science and Interpretation-Oriented Tools for an 
Easy Follow-Up of Long-Term Treatments
Data science is often characterized as a triad that, be-

yond data collection and data modelling and analysis, 
also has to consider the design and use of interpretation-
oriented tools to extract actionable knowledge for medi-
cal decision-making. Here, a data science methodology 
useful to identify dynamic understandable patterns from 
data is presented. Clustering based on rules by states 
(ClbRxS) [36] is a general data science approach to extract 
relevant decisional knowledge from data useful to sup-
port complex decision-making in real problems that 
evolve along time. When several waves of data are avail-
able, the ClbRxS proposes a multiview-like clustering ap-
proach [37], where each view corresponds to one data 
wave and local clustering is performed inside each of the 
waves. This produces several classifications of the objects 
(patients) regarding their situations in the several data 
waves. The method includes the use of several interpreta-
tion-oriented tools to support a further process of con-
ceptualization of the clusters (such as the class panel 
graph [16] or traffic lights panels [38]) that constitutes a 
final step of post-processing [39], devoted to guarantee 
the understandability of the clusters from the clinical 
point of view, which is critical to bridge the gap between 
the results of the data mining step and the effective deci-
sion-making layer. The final outcome of the proposed 
methodology is named trajectories map and consists of a 
visual diagram with most frequent paths of objects (pa-
tients) through the classes of successive data waves, as 
seen in Figure 1. This map is very intuitive and provides 
an easily interpretable perspective of how patients evolve 
across time, allowing the experts to both follow-up each 
single patient and analyse main evolution patterns to as-
sociate treatments or actions to each of them. The results 
in Figure 1 come from a real application to understand 
the emotional and functional evolution of spinal cord in-
jury patients from Hospital Guttman (a referral centre of 
neurological lesion in southern Europe) after discharge 
[40].

The trajectories map is also useful to associate the path 
followed across time to each patient and to analyse the 
relationship of this path with other variables not included 
in the clustering process, which are called illustrative vari-
ables. These can help enrich interpretation or identify the 
differences between patients following one path or an-
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other, thus identifying possible predictors of the path, to 
be used by medical doctors to determine treatments. In 
the particular application presented, 4 main patterns 
were discovered and several hypotheses were elaborated 
about the reasons for psychological distress or decreases 
in quality of life of patients over time (which resulted to 
be related with the evolution time of the lesion and the 
dysfunctional families). The use of the proposed method-
ology permits the synthesis of a dynamic structure of a 
complex domain in an easy representation that can be 
understood by health professionals without technical 
skills in data science and the association of the discovered 
paths with potential predictors, useful to associate actions 
or decisions to each pattern. Needless to say, this meth-
odology has great potential to assess the follow-up of pa-
tients in the area of nephrology.

OSS for Data Science in the Medical Domain

As stated in the Introduction, part of the challenges 
faced by the healthcare sector have become computer sci-
ence-related problems that can be addressed through 
data science. Let us put forward 2 aspects of this that are 
transversal to the complete data science domain: the use 
of OSS in medical practice and the potential benefit of 
endowing health practitioners with computer program-
ming skills.

The last decade has witnessed how OSS has overtaken 
proprietary software in data science, not only amongst 
core experts but also in industry and business applica-
tions in general. In practice, this means that the advan-
tages of OSS have proved to be more than those of the 
proprietary counterparts. It has been suggested [41] that 

K. Gibert

1st Assessment

T6

T12

T4

T7

TRAJECTORIES

2nd Assessment 3rd Assessment

IndepModAntC49

IndepPosC55

DependentsC54

DepEstoics
C64

IndepPositius
C63

SemiDepNegC46

IndepModeratC62

SemidepHeteroC56

DepEstoics
C52

IndepPos

C59

IndepModC57

Fig. 1 Trajectories map of social inclusion of spinal cord injury pa-
tients. This is an automatic software-generated visual representa-
tion. Each column of nodes represents a data wave. Each node 
represents one of the clusters found in that wave, which is labelled 
according to the patient’s profile represented by the cluster, after a 
conceptualization process made by experts on the basis of cluster 
information automatically provided by the software. In this case, 
labelling regards the functionality, wellness, and sometimes evolu-
tion of the lesion. Colours can be associated with a latent target 
concept, like, for example, more (in red) or less (in green) global 
impairment of the patient. This is represented with the vertical 
position of the nodes in the graph. Edges represent the paths fol-
lowed by patients along time, and thickness of the edges is associ-

ated with observed prevalence of each path. IndepPos, function-
ally independents, with assistive technologies required, and feel 
wellness; IndepModAnt, functionally independent with moderate 
distress and old lesions; SemiDepNeg, very distressed and require 
help for some specific daily life activities such as moving from bed 
to wheelchair or going to bathroom; dependents, dependent and 
psychologically heterogeneous; IndepPositius, independent and 
feel wellness; IndepModerat, independent and moderate wellness; 
DepEstoics, dependents, but feel wellness; IndepMod, indepen-
dents and moderate wellness; and SemidepHetero, with depen-
dence for some specific daily life activities such as moving from 
bed to wheelchair or going to bathroom, psychologically heteroge-
neous.
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in the medical informatics domain, software vendors 
have failed to provide stable enough technical partner-
ships and cost-effective products. This is compounded by 
the limited standardization that proprietary products 
provide due to incompatibilities between software prod-
ucts of different vendors. OSS eliminates licensing costs, 
promotes compatibility, and allows customizing the soft-
ware tools to the medical client needs and requirements 
[42]. Furthermore, by its own nature, OSS encourages 
and nurtures innovation and collaboration, shortening 
software development cycles [43, 44]. The OSS move-
ment in medical informatics is promoted by internation-
al organizations such as the Open Source Working Group 
of the AMIA [45], the Open Source Health Informatics 
Working Group of the IMIA [46], or the Libre/Free and 
OSS Working Group of the EFMI [47], to name a few.

To this day, there is very limited work on the develop-
ment of OSS solutions specifically tailored to the nephrol-
ogy domain, and from the data science perspective; they 
mostly concern data collection, storage, and manage-
ment. A pioneering experience was PatientView [48], a 
National Health Service-run UK-wide online system let-
ting nephrology patients see test results almost in real 
time. It also allows patients to add supplementary infor-
mation and can be seen, overall, as a data collection and 
management system. In fact, most OSS available systems 
focus on this part of data science, including kidney dis-
eases clinical database construction [49] and, increasing-
ly, EMR/EHR data processing. The latter has been ap-
plied, for instance, to haemodialysis clinical workflow 
modelling [50]. The extension to systems that cover and 
integrate also data analytics is still fairly speculative, al-
though some attempts have been made, such as, for in-
stance, the definition of an architecture for clinical deci-
sion support that integrates openEHR specifications and 
Bayesian networks methods [51], and, very recently and 
with direct application to nephrology, an architecture of 
OSS tools that combines textual information extraction 
from EHRs, faceted search, and information visualization 
that also involves, even if as a prototype, the use of ML 
methods [52].

Even if the question may sound far-fetched and, given 
the computerization and datafication of clinical practice, 
should medical practitioners learn computer program-
ming skills? It stands to reason that the best way to engage 
healthcare professionals is by providing them with some 
level of control over these technologies; this means at least 
familiarity with programming skills, in a way that such 
control is not fully left in the hands of computer scientists, 
thus guaranteeing that computer technologies fully re-

spond to healthcare needs and requirements. There have 
been pilot studies and proofs of concept that demonstrate 
that transferring such skills is viable [53, 54] if support 
from the medical institutions in the form of, for instance, 
help desks and regulatory affairs is provided. Given the 
current accessibility of OSS and the increasing usability 
of programming tools (in the form, for instance, of mo-
bile or web applications), technical barriers are low. An 
example of this is the R programming language, devel-
oped by Ross Ihaka and Robert Gentleman at the Univer-
sity of Auckland, New Zealand [55], oriented towards sta-
tistics and widely used by medical statisticians. It is a 
GNU project [56], so it guarantees end users the freedom 
to run, study, share, and modify the software. Most of 
such users work in research, especially in the fields of bio-
medicine and epidemiology, but also economics, sociol-
ogy, or political science, to name a few. For those who 
want to start in R, the following resources, among others, 
could be useful: Quick R is a reference guide, including 
good examples with codes for common tasks on data 
management, graphics, and basic and some advanced sta-
tistical techniques [57]. The Cookbook for R [58] has 
good recipes for data analysis and specifically about data 
visualization in R; all recipes include codes ready to be 
copied and pasted into R. It must also be noted that R has 
a steep learning curve; this is in part because the way to 
analyse data is not as intuitive as, for example, in Statisti-
cal Package for the Social Sciences (SPSS), a proprietary 
software (now part of IBM) traditionally favoured in the 
life sciences. Arguably, that intuitive feeling could be seen 
as a mirage or a simplified view, while with R, the user 
takes full control of the analysis.

It is also true, though, that no standard for teaching 
coding to non-programmers such as healthcare workers 
exists so far and that software quality standard issues are 
far from a small hurdle to overcome. A more gradual ap-
proach would entail adding programming skills to cur-
rent medical students’ curricula, ensuring that new gen-
erations of medical practitioners can “both practice med-
icine and engage in the development of useful, innovative 
technologies to increase efficiency and adapt to the mod-
ern medical world” [59].

Conclusions

1.	 	Healthcare is quickly becoming data dependent, and 
data science is a discipline that holds the promise of con-
tributing to the development of personalized medicine, 
although nephrology still lags behind in this process.
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2.	 	Data will guide medical decisions based on individual 
patient characteristics rather than on averages over a 
whole population usually based on RCTs that exclud-
ed kidney disease patients.

3.	 	CWSs are moving towards specific processes and pa-
thologies, where information is displayed intelligent-
ly, accompanying the needs of professionals. The 
ARGOS institutional project in e-health is an example 
of such a system for the standardization of clinical 
practice.

4.	 	There is increasing interest in obtaining data con-
cerning the effectiveness of available treatments in 
current patient care based on pragmatic clinical tri-
als focused on correlation between treatments and 
outcomes.
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