In the article by Barraud S, Delember B, Poirsier-Violle C, Bouligand J, Mérol J-J, Grange F, Higel-Chaufour B, Decoudier B, Zalzali M, Dwyer AA, Acierno JS, Pitteloud N, Millar RP, Young J entitled "Congenital hypogonadotropic hypogonadism with anosmia and Gorlin features caused by a PTCH1 mutation reveals a new candidate gene for Kallmann syndrome" [Neuroendocrinology. 2020, DOI: 10.1159/000506640], the correct Figure 1 should read:

Fig. 1. Family pedigree and schematic depicting the effect of the PTCH1 nonsense mutation on the PTCH1 protein. **a** Family pedigree. Generations are depicted by Roman numerals (I–III), individuals are numbered. Men are depicted by squares, women by circles. The proband (III-4) is identified by the arrow. A diagonal line through the shape indicates the individual is deceased. Affected patients II-3, II-4, and III-4 carry the heterozygous, never reported nonsense variant in PTCH1 c.838G>T (p.Glu280*). Healthy subject II-1 does not carry the deleterious mutation. (1) Additional TENM1 c.890G>A (p.R297Q) variant found by exome (see also text in Results section). (2) Additional STUB1 c.68G>T (p.Ser23Ile) variant found by exome (see text in Results section). **b** Schematic depicting the Ptch1 protein. (I) The normal Ptch1 protein comprising 1,449 amino acids and 12 transmembrane domains. The protein is a component of the Sonic Hedgehog signaling pathway (https://www.cellsignal.com/contents/sciencecestd/pathways-stem-cell-markers/hedgehog-signaling-interactivepathway/pathways-hedgehog). (II) The putative mutated protein (p.Glu280*) could be truncated and only contain the first intracellular domain, the first transmembrane domain, and a part of the first extracellular loop. Alternatively, the Ptch1 protein encoded by the mutated PTCH1 allele could not be translated due to the degradation of the mRNA by a mechanism of non-sense mediated mRNA decay leading to PTCH1 haploinsufficiency. Localisation of 3 amino acid changes found in patients with isolated KS from the Lausanne cohort (p.Ile108Met, p.Arg1192Ser and p.Ser1203Arg) are indicated (see also Table 1 and text). GGS/NBCCS, Gorlin-Goltz syndrome/nevoid basal cell carcinoma syndrome; CHH, congenital hypogonadotropic hypogonadism; mRNA, messenger RNA; NMD, nonsense-mediated mRNA decay.