Commentary on “C-Reactive Protein for the Diagnosis of Late-Onset Infections in Newborn Infants”

Mohan Pammia Prakesh S. Shahb

aBaylor College of Medicine, Houston, TX, USA; bMount Sinai Hospital and Institute of HPME, University of Toronto, Toronto, ON, Canada

Commentary

Assessing diagnostic tests for accuracy and reliability is an important component of evidence-based practice. The Cochrane Screening and Diagnostic Test Methods group (https://methods.cochrane.org/sdt/welcome) oversees the editorial process for systematic reviews of diagnostic test accuracy. Brown et al. [1] have published a Cochrane diagnostic test accuracy review on the accuracy of C-reactive protein (CRP) in the diagnosis of late-onset infection in newborn infants. Preterm birth and infections are the most common causes of neonatal deaths worldwide [2]. Early diagnosis and treatment of infections can reduce neonatal mortality and morbidity. Late-onset infection, defined as occurring after 48–72 h of age, occurs in between 10 and 40% of neonates depending upon population studied [3, 4]. Risk factors include lower gestational age, higher severity of illness at birth, the presence of central catheters for more than 4 days, receipt of parenteral nutrition for more than 1 week, and longer duration without enteral feeds [5]. The gold standard for the diagnosis of late-onset infection is isolation of pathogenic organisms from culture of the blood, cerebrospinal fluid, or other sterile body fluids; however, the culture results can take up to about 24–48 h after incubation. The sensitivity of blood culture is often questioned given the low colony counts (<4 colony forming units/mL of blood) in neonatal infection compared to higher colony counts in adults and children [6]. Low accuracy of blood cultures can result from non-sterile techniques of blood collection (contamination) or low blood volume inoculation (<1 mL of blood) [7]. Alternative methods of detection of infection including molecular markers of infection (microbial DNA by PCR or sequencing) [8] or inflammatory biomarkers such as CRP, procalcitonin, and cytokines/chemokines may have diagnostic potential. These diagnostic markers may be used for screening high-risk neonates, early ruling in or ruling out infection, or in following their trend in case of evolving infection and in response to therapy [9, 10].

Brown and colleagues [1] systematically reviewed the diagnostic accuracy of CRP (index test) in the initial evaluation of sepsis in newborn infants and compared it to blood culture (reference standard). They included cohort and cross-sectional studies, which evaluated CRP in the initial work up of late-onset infection. Included studies defined “late-onset” as infection that occurred from after 48 h of age and up to 6 days of age, although most studies defined it as after 72 h of age. Second, they included 20 studies (1,615 newborn infants), which were mostly small, single-center cohort studies (sample size ranging from 11 to 184 infants, with 4 studies having a sample size less than 25). Sixteen of the 20 studies enrolled preterm infants predom-
used a cutoff between 5 and 10 mg/L) for diagnosis of infection, whereas 6 studies did not define a cutoff a priori. The risk of bias as assessed using QUADAS-2 tool, as recommended by the Cochrane screening and diagnostic test methods group, was reported to be low in the included studies, and the evidence was rated as moderate quality (serious issue with heterogeneity) [11]. The authors were unable to perform subgroup analysis by gestational age or by type of microorganism due to lack of sufficient data.

The extracted data from the studies were synthesized in a meta-analysis using the hierarchical summary receiver operating curve (HSROC model), which incorporates the varying thresholds of the index test used in different studies [12]. Key finding in this meta-analysis was the low sensitivity of CRP (Fig. 1); at median reported specificity of 0.74, the sensitivity was 0.62 (95% CI 0.50–0.73); at the lower quartile reported specificity of 0.61, the sensitivity was 0.76 (95% CI 0.65–0.84); and at the upper quartile reported specificity of 0.85, the sensitivity was 0.44 (95% CI 0.32–0.57).

Clinical heterogeneity including the prevalence of confirmed infection is a limitation to the generalizability of the findings of the review. Positive predictive values of a diagnostic test vary with the prevalence of the target condition, and the correlation of positive predictive value with prevalence of infection from the studies included in this review is depicted in Figure 2. If the summary sensitivity (0.62) at

<table>
<thead>
<tr>
<th>Study</th>
<th>TP</th>
<th>FP</th>
<th>FN</th>
<th>TN</th>
<th>Predefined threshold</th>
<th>Standard threshold (5–10 mg/L)</th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminullah, 2001</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>yes</td>
<td>no</td>
<td>0.57 (0.18, 0.90)</td>
<td>0.75 (0.19, 0.99)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benitz, 1998</td>
<td>33</td>
<td>41</td>
<td>20</td>
<td>90</td>
<td>no</td>
<td>yes</td>
<td>0.62 (0.48, 0.75)</td>
<td>0.69 (0.60, 0.77)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bohnhorst, 2012</td>
<td>40</td>
<td>18</td>
<td>18</td>
<td>94</td>
<td>yes</td>
<td>yes</td>
<td>0.69 (0.55, 0.80)</td>
<td>0.84 (0.76, 0.90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boo, 2008</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>62</td>
<td>yes</td>
<td>no</td>
<td>0.59 (0.33, 0.82)</td>
<td>0.90 (0.80, 0.96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bustos, 2012</td>
<td>3</td>
<td>1</td>
<td>22</td>
<td>27</td>
<td>no</td>
<td>no</td>
<td>0.12 (0.03, 0.31)</td>
<td>0.96 (0.82, 1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chan, 1997</td>
<td>14</td>
<td>26</td>
<td>16</td>
<td>96</td>
<td>yes</td>
<td>yes</td>
<td>0.47 (0.28, 0.66)</td>
<td>0.79 (0.70, 0.86)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choo, 2012</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>yes</td>
<td>yes</td>
<td>0.14 (0.00, 0.58)</td>
<td>0.60 (0.15, 0.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decembrino, 2015</td>
<td>4</td>
<td>11</td>
<td>4</td>
<td>22</td>
<td>no</td>
<td>yes</td>
<td>0.50 (0.16, 0.84)</td>
<td>0.67 (0.48, 0.82)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doelner, 1998</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>yes</td>
<td>yes</td>
<td>0.71 (0.29, 0.96)</td>
<td>0.60 (0.32, 0.84)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fendler, 2008</td>
<td>48</td>
<td>3</td>
<td>16</td>
<td>11</td>
<td>no</td>
<td>no</td>
<td>0.75 (0.63, 0.85)</td>
<td>0.79 (0.49, 0.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hisamuddin, 2015</td>
<td>11</td>
<td>9</td>
<td>27</td>
<td>9</td>
<td>yes</td>
<td>yes</td>
<td>0.29 (0.15, 0.46)</td>
<td>0.50 (0.26, 0.74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jacquot, 2009</td>
<td>17</td>
<td>6</td>
<td>13</td>
<td>37</td>
<td>yes</td>
<td>yes</td>
<td>0.57 (0.37, 0.75)</td>
<td>0.86 (0.72, 0.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kipfmueller, 2015</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>15</td>
<td>yes</td>
<td>yes</td>
<td>0.43 (0.10, 0.82)</td>
<td>0.83 (0.59, 0.96)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korek, 2014</td>
<td>23</td>
<td>5</td>
<td>11</td>
<td>13</td>
<td>yes</td>
<td>yes</td>
<td>0.68 (0.49, 0.83)</td>
<td>0.72 (0.47, 0.90)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kumar, 2010</td>
<td>55</td>
<td>60</td>
<td>1</td>
<td>26</td>
<td>yes</td>
<td>yes</td>
<td>0.98 (0.90, 1.00)</td>
<td>0.30 (0.21, 0.41)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ng, 1997</td>
<td>27</td>
<td>2</td>
<td>18</td>
<td>54</td>
<td>yes</td>
<td>yes</td>
<td>0.60 (0.44, 0.74)</td>
<td>0.96 (0.86, 1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pynn, 2015</td>
<td>30</td>
<td>35</td>
<td>7</td>
<td>67</td>
<td>yes</td>
<td>yes</td>
<td>0.81 (0.65, 0.92)</td>
<td>0.66 (0.56, 0.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seibert, 1990</td>
<td>13</td>
<td>30</td>
<td>10</td>
<td>47</td>
<td>yes</td>
<td>yes</td>
<td>0.57 (0.34, 0.77)</td>
<td>0.61 (0.49, 0.72)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sherwin, 2008</td>
<td>14</td>
<td>1</td>
<td>20</td>
<td>17</td>
<td>no</td>
<td>no</td>
<td>0.41 (0.25, 0.59)</td>
<td>0.94 (0.73, 1.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verboon-Macolek, 2006</td>
<td>24</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>no</td>
<td>yes</td>
<td>0.65 (0.47, 0.80)</td>
<td>0.52 (0.33, 0.71)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
median specificity (0.74) was applied to a hypothetical co-
hort of 1,000 newborn infants with a prevalence of late-
onset infection of 40%, we would miss 156 cases of sepsis
(false negatives) and wrongly diagnose 159 infants with
sepsis (false positives). If the prevalence were 10%, we
would miss 38 cases of sepsis and wrongly diagnose 234
infants with sepsis. Independent of the prevalence, single-
time CRP testing at the initial diagnosis of sepsis has lower
diagnostic accuracy than would be useful in practice.

This review does not address serial monitoring of CRP
for diagnosis of infection or to follow response after ther-
apy. The reason for the false positives could be elevation
of CRP in noninfective inflammatory conditions and
false negatives could be because of the time lag in eleva-
tion of CRP after infection. Research on alternative bio-
markers that are not elevated in noninfective conditions
but rapidly increase after infection without a significant
time lag is necessary and may have higher diagnostic ac-
curacy in neonatal sepsis [10]. Advances in next-genera-
tion sequencing methods have improved detection of in-
fec tion based on microbial nucleic acid. Molecular micro-
biological methods may provide rapid identification of
the infecting organism and antimicrobial susceptibility
patterns, which may be promising alternatives to CRP or
other inflammatory biomarkers [8].

Acknowledgement

Cochrane Neonatal Reviews are produced with support from
Vermont Oxford Network, a worldwide collaboration of health
professionals dedicated to providing evidence-based care of the
highest quality for newborn infants and their families.

Conflict of Interest Statement

The authors serve in the editorial group of the Cochrane Neo-
natal.

Funding Sources

M.P. is funded by NIH grants, R03HD098482 and
R21HD091718, not related to this commentary, and the funders
had no role in this manuscript. P.S.S. is supported by an Applied
Research Chair in Reproductive and Child Health Services and
Policy Research from the Canadian Institutes of Health Research.

Author Contributions

M.P. wrote the initial draft of the manuscript and made final
revisions. P.S. provided intellectual input, produced Figure 2, and
approved the final version of the manuscript.

References

1 Brown JVE, Meader N, Cleminson J, Mc-
Guire W. C-reactive protein for diagnosing
late-onset infection in newborn infants. Co-
chrane Database Syst Rev. 2019 Jan 14;1(1):
CD012126.
2 Liu L, Ozai S, Hogan D, Chu Y, Perin J, Zhu J,
et al. Global, regional, and national causes of
under-5 mortality in 2000–15: an updated
systematic analysis with implications for the
Dec 17;388(10063):3027–35.
3 Shah P, Yoon EW, Chan P, Committee
MARR. The report of the Canadian Pediatric
Society; 2014 : https://www.canadianneona-
talnetwork.org/Portal/LinkClick.aspx?filetic
eket=eGxmMubxjk%3D&tabid=39.
4 Shane AL, Stoll BJ. Neonatal sepsis: progress
towards improved outcomes. J Infect. 2014
Jan;68(Suppl 1):S24–32..
5 Shah J, Jefferies AL, Yoon EW, Lee SK, Shah
PS. Risk factors and outcomes of late-onset
bacterial sepsis in preterm neonates born at
<32 weeks’ gestation. Am J Perinatol. 2015
Jun;32(7):675–82..
6 Schelonka RL, Chai MK, Yoder BA, Hensley
D, Brockett RM, Ascher DP. Volume of blood
required to detect common neonatal patho-
7 Isaacman DJ, Karasic RB, Reynolds EA, Kost
SI. Effect of number of blood cultures and vol-
ume of blood on detection of bacteremia in
8 Pammi M, Flores A, Versalovic J, Leeflang
MM. Molecular assays for the diagnosis of
sepsis in neonates. Cochrane Database Syst
Rev. 2017 Feb 25;2(2):CD011926..
9 Bossuyt PM, Irwig L, Craig J, Glasziou P.
Comparative accuracy: assessing new tests
against existing diagnostic pathways. BMJ.
2006 May 6;332(7549):1089–92..
10 Hedegaard SS, Wisborg K, Hvas AM. Diag-
nostic utility of biomarkers for neonatal sep-
sis: a systematic review. Infect Dis. 2015 Mar;
47(3):117–24..
11 Whiting PF, Rutjes AW, Westwood ME, Mal-
lett S, Deeks JJ, Reitsma JB, et al. QUADAS-2:
a revised tool for the quality assessment of
2011 Oct 18;155(8):529–36..
12 Rutter CM, Gatsonis CA. A hierarchical re-
gression approach to meta-analysis of diag-
Cochrane Abstract

Background: Late-onset infection is the most common serious complication associated with hospital care for newborn infants. Because confirming the diagnosis by microbiological culture typically takes 24–48 h, the serum level of the inflammatory marker C-reactive protein (CRP) measured as part of the initial investigation is used as an adjunctive rapid test to guide management in infants with suspected late-onset infection. **Objectives:** The aim of this study was to determine the diagnostic accuracy of serum CRP measurement in detecting late-onset infection in newborn infants. **Search Methods:** We searched electronic databases (MEDLINE, Embase, and Science Citation Index to September 2017), conference proceedings, previous reviews, and the reference lists of retrieved articles. **Selection Criteria:** We included cohort and cross-sectional studies evaluating the diagnostic accuracy of serum CRP levels for the detection of late-onset infection (occurring more than 72 h after birth) in newborn infants. **Data Collection and Analysis:** Two review authors independently assessed eligibility for inclusion, evaluated the methodological quality of included studies, and extracted data to estimate diagnostic accuracy using hierarchical summary receiver operating characteristic models. We assessed heterogeneity by examining variability of study estimates and overlap of the 95% confidence interval (CI) in forest plots of sensitivity and specificity. **Main Results:** The search identified 20 studies (1,615 infants). Most were small, single-center, prospective cohort studies conducted in neonatal units in high- or middle-income countries since the late 1990s. Risk of bias in the included studies was generally low with independent assessment of index and reference tests. Most studies used a prespecified serum CRP threshold level as the definition of a “positive” index test (typical cutoff level between 5 and 10 mg/L) and the culture of a pathogenic microorganism from blood as the reference standard. At median specificity (0.74), sensitivity was 0.62 (95% CI 0.50–0.73). Heterogeneity was evident in the forest plots, but it was not possible to conduct subgroup or meta-regression analyses by gestational ages, types of infection, or types of infecting microorganism. Covariates for whether studies used a predefined threshold or not, and whether studies used a standard threshold of between 5 and 10 mg/L, were not statistically significant. **Authors’ Conclusions:** The serum CRP level at initial evaluation of an infant with suspected late-onset infection is unlikely to be considered sufficiently accurate to aid early diagnosis or select infants to undergo further investigation or treatment with antimicrobial therapy or other interventions.