An Interdisciplinary Approach to Optimize the Care of Transitioning Adolescents and Young Adults with CKD


Keywords
Health-care transition · Self-management adolescents · Young adults · Chronic kidney disease · CKD · End-stage kidney disease

Abstract
Adolescents and young adults (AYAs) with CKD or end-stage kidney disease (ESKD) have unique medical, dental, psychological, neurocognitive, and academic needs and require close interdisciplinary collaboration to optimize their care. The etiology of CKD in AYAs is diverse compared to older adults. With their continuously improved survival, AYAs must start preparation for health-care transition (HCT) from pediatric- to adult-focused health care in the pediatric setting and it must continue at the adult-focused setting, given that their brain maturation and self-management skill acquisition occur until their mid-20s. While the growth and physical maturation of most visible body parts occur before 18 years of age, the prefrontal cortex of the brain, where reasoning, impulse control, and other higher executive functions reside, matures around 25 years of age. The HCT process must be monitored using patient- and caregiver-measuring tools to guide interventions. The HCT process becomes more complex when patients and/or caregivers have a language barrier, different cultural beliefs, or lower literacy levels. In this article, we discuss the unique comorbidities of pediatric-onset CKD/ESKD, provide information for a planned HCT preparation, and suggest interdisciplinary coordination as well as cultural and literacy-appropriate activities to achieve optimal patient outcomes.
Chronic Kidney Disease/End-Stage Kidney Disease in Adolescents and Young Adults

Prevalence, Etiology and Survival

The prevalence of CKD in this age group is not well defined, and there are substantial regional, socioeconomic, and ethnic differences as well as undiagnosed cases in developing countries [1–3]. The prevalence of end-stage kidney disease (ESKD) in children and adolescents is 55–60 per million of age-related population [4] but it is rising, due to an increase of congenital anomalies of the kidneys and urinary tract (CAKUT) and cancer survival [5]. The etiology of CKD/ESKD in adolescents and young adults (AYAs) varies by age with predominantly CAKUT in younger patients and glomerular conditions in older patients [6–8]. AYAs with ESKD have a 10-year survival of >85% [9] and health-care transition (HCT) preparation from pediatric- to adult-focused care and from parent-directed to health self-management must take place, to ensure optimal patient outcomes.

Unique Comorbidities

AYAs with CKD/ESKD have unique comorbidities (Fig. 1; Table 1) that create specific challenges for patients, families, and providers as they have to manage the burden of care including: polypharmacy [10], procedures (enteral feeding, catheterizations, injections – growth hormone – or erythropoietin-stimulating agents – or dialysis), special diets, academic challenges, multiple medical appointments, and increase health-care utilization (surgeries, admissions, or emergency department visits) [11]. Other comorbidities include cardiovascular complications [12, 13], growth, mineral bone disorders [14], anemia, reproductive abnormalities, and dental conditions. These patients need close interdisciplinary collaboration to optimize their care.

Cognitive Impairment, ADHD, and Academic and Psychological Issues

AYAs with CKD/ESKD are more likely to have cognitive deficits and learning disabilities such as poor executive function and short attention span, and these are directly related to the disease duration [15, 16]. ADHD is highly prevalent in patients with pediatric-onset CKD/ESKD and often is undiagnosed [17]. It is essential to recognize their learning challenges, ADHD and school absenteeism, and facilitate remediation [18].

In addition, social interactions with their peers and teachers may place them at risk for being labeled as “different” and/or bullying. Failure to recognize these challenges may result in behavioral and affective disorders. It is well known that emotional health is associated with

Fig. 1. Comorbidities of pediatric-onset CKD or ESKD. ESKD, end-stage kidney disease; HRQoL, health-related quality of life.
<table>
<thead>
<tr>
<th>System</th>
<th>Manifestations/issues</th>
<th>Management to avoid complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td>Hypertension or volume overload</td>
<td>Aggressive blood pressure control by height percentile if younger than 13 years of age or &lt;130/80 if older than 13 years of age. Monitor cardiac function. If applicable, encourage fluid restriction</td>
</tr>
<tr>
<td>Sodium</td>
<td>Retention in patients with glomerular conditions</td>
<td>Fluid restriction and diuretics (if applicable). Thiazides in the early stages of CKD and loop diuretics in later stages of CKD</td>
</tr>
<tr>
<td></td>
<td>Wasting in patients with CAKUT and is associated with poor growth</td>
<td>Salt supplementation from 1 to 5 mEq/kg/day</td>
</tr>
<tr>
<td>Potassium</td>
<td>Hyperkalemia</td>
<td>Restrict potassium-rich food</td>
</tr>
<tr>
<td></td>
<td>Hypokalemia</td>
<td>Supplement potassium and constant monitoring to avoid hyperkalemia</td>
</tr>
<tr>
<td>Hematological</td>
<td>Anemia</td>
<td>Maintain age-appropriate hemoglobin (target for average of 12.0 mg/dL)</td>
</tr>
<tr>
<td>Mineral bone abnormalities</td>
<td>Metabolic bone disease</td>
<td>Vitamin D/calcium supplementation, phosphate binders. Avoid hyperparathyroidism, high or low bone turnover. Keep bone mineral labs in normal ranges for age to optimize growth</td>
</tr>
<tr>
<td>Acid-base balance</td>
<td>Metabolic acidosis</td>
<td>Bicarbonate supplementation</td>
</tr>
<tr>
<td>Growth</td>
<td>Short stature</td>
<td>Optimize acidosis, metabolic bone disease, and anemia. If possible, prescribe growth hormone supplementation</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>Abnormal lipid panel</td>
<td>Evaluate need for fibrates or krill oil. Consider diet and lipid-lowering agents in heterozygous familial hypercholesterolemia</td>
</tr>
<tr>
<td>Dental issues</td>
<td>Teeth, enamel, gum, and salivary issues</td>
<td>Early referral to dental services. Avoid medications that affect dental health</td>
</tr>
<tr>
<td>Psychoeducation</td>
<td>Poor academic performance</td>
<td>Foster interdisciplinary collaboration with social workers and educational providers. Create care plans and facilitate school adaptation</td>
</tr>
<tr>
<td>Cognitive impairment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic issues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mood disorders</td>
<td>Anxiety</td>
<td>Use screening tools in the clinic such as GADS Survey, RCADS child/RCADS-parent, and PHQ-9 Surveys. Provide behavioral health services to the patients. Refer to psychological team</td>
</tr>
<tr>
<td>HRQoL</td>
<td>Individual conception of happiness and wellness</td>
<td>Use validated questionnaires such as PROMIS or PedsQL focused in adolescents and young adults with CKD. Identify areas of improvement for the patient</td>
</tr>
<tr>
<td>Treatment adherence</td>
<td>Failure or success in treatment with biological and clinical manifestations</td>
<td>Educational program about disease and complications, importance of medications; work with parents with reminders and multidisciplinary strategies</td>
</tr>
<tr>
<td>Diet adherence</td>
<td>Failure or success in treatment with biological and clinical manifestations</td>
<td>Educational program importance of dietary restrictions, and their specifications, work among family and dietitians to accommodate a suitable diet (budget and cultural/religious restrictions)</td>
</tr>
<tr>
<td>Appointment adherence</td>
<td>Failure or success to keep a specific number of appointments and failure or success to communicate with the health-care providers</td>
<td>Coordinate visits with multiple providers. If electronic health records available, encourage the patient/caregiver to use the patient portal for communication. Use telemedicine when possible</td>
</tr>
<tr>
<td>Disease-specific and nutrition education material</td>
<td>Available patient education material at high literacy level</td>
<td>Low-literacy tools available at the following website: <a href="http://www.med.unc.edu/transition">www.med.unc.edu/transition</a>. Create or adapt current patient education material to the different developmental ages with a 4th-grade literacy level</td>
</tr>
</tbody>
</table>

ESKD, end-stage kidney disease; HCT, health-care transition; CAKUT, congenital anomalies of the kidneys and urinary tract.
medical consequences that limit their health management and school performance. Hence, it is essential to inform the school personnel (counselors, teachers, social workers, and school nurses) about the academic, physical, and emotional effects of CKD/ESKD. Supporting these students in their academic performance and integrating them with their peers becomes extremely important. Communicating often with the academic team will overcome many of the barriers while maximizing learning opportunities.

Unfortunately, most AYAs do not like to disclose their health conditions [19]. Health-care providers must discuss disclosure issues in a private setting and be proactive in addressing patients’ concerns. A letter can be given to the patient and parent to be delivered to the school system, stressing the point about unrecognized learning disabilities, particularly if their condition presented at younger ages [20]. Teachers need to implement technical and didactic activities that encourage the patients’ participation. Teachers need to prepare, update, and make an additional effort to recognize what their students require (including an individualized education plan), making use of all available pedagogical resources to help them promote a better academic performance, adaptation and integration of the student into the group where their participation is appreciated and recognized. Flexibility, organization, and distribution of content are reasonable adjustments that should be applied, according to the student’s academic progress. In addition, the educator recommendations generate favorable environments for peer support and interrelation, maintaining an optimal balance for the development of socioemotional resilience [21].

Psychological Issues

Anxiety and depression are highly prevalent among pediatric CKD patients and often are associated with a history of maternal depression and anxiety, sometimes even during pregnancy for prenatally diagnosed conditions [22]. Mood disorders can affect as many as 2/3 of patients, especially in families with lower socioeconomic status [22]. In the CKD cohort, >25% of the patients have internalizing problems, attention problems and poor adaptive skills, persistent hypertension-associated attention problems, and resulting behavioral symptoms [23].

Health-Related Quality of Life

Even with mild CKD, children report worse overall health-related quality of life, physical, school, emotional, and social functioning in comparison with healthy children [24]. Early intervention to improve linear growth and to address school functioning difficulties is recommended [24]. The ramifications of these difficulties are in part responsible for the substantial problems in early adulthood [25]. The longer the duration of ESKD, the lower the adult health-related quality of life. Former pediatric ESKD patients often cannot find a partner, live independently, or achieve gainful employment. AYAs with CKD/ESKD and low parental educational levels require optimized educational, psychologic, and social support to reach the educational level of their peers. This support should be maintained during adulthood to help them integrate into the workforce and build a family [26]. The negative impact of short stature cannot be emphasized enough [27].

Adherence

Adhering to the often complex and intense requirements of CKD/ESKD treatment is challenging. Adolescents and parents feel emotional attachment to the pediatric unit and use the support system as a tool to adherence. Once in adult care, adolescents feel out of place among the older patients, overwhelmed by the environment and the perceived lack of attention from health professionals [28]. This often results in even worse adherence and subsequent graft loss.

Dental Conditions in Pediatric-Onset CKD/ESKD

Dental and oral health is understudied in pediatric patients with CKD/ESKD. They can have decreased salivary flow (related to fluid restriction or medication side effects), abnormal saliva [29], stomatitis, gingivitis and parotitis [30, 31], altered salivary composition [32], and enamel hypoplasia. Amlodipine [33] and cyclosporine [34] are associated with substantial gingival hyperplasia. The oral pathology in CKD/ESKD may affect deciduous and/or permanent teeth and may worsen with longer disease duration and/or genetic conditions. Of interest, a systematic review of the literature revealed that dental caries is lower among pediatric patients with CKD compared to healthy controls, likely related to the effects of uremia [35].

Cardiovascular Issues

Cardiovascular complications are highly prevalent among pediatric CKD patients and form the major cause of premature death [12, 14, 36, 37]. The mechanisms are multifactorial, including end-organ damage from hypertension [37], volume overload [38], increased peripheral resistance [38] and may be due to elevated fibroblast fac-
tor 23 [39–41], cardiac stunning during dialysis with intradialytic hypotension [42, 43], and other factors. More recently, derangements of essential and toxic trace elements have been recognized. [44–47]. The changes are not limited to the heart, but there is also a high prevalence of aortic dilation [13, 48, 49]. It will be important to pay more attention to these issues to prolong the long-term survival of these patients.

**Gastrointestinal and Nutrition Issues**

Constipation is highly prevalent and may be related to high output kidney failure in CAKUT patients, structural problems such as Prune-belly syndrome, or neurological problems, such as in spina bifida patients. Cachexia or protein energy-wasting is common in pediatric patients with CKD/ESKD and thought to be related to systemic inflammation, endocrine disturbances, abnormal neuro-peptide signaling, and poor nutritional intake [50]. These patients also often have delayed gastric emptying, resulting in changes of their oral glucose tolerance testing. Thinness has also been associated with aortic dilation [48]. Aggressive enteral nutrition causes obesity [51]. Increased body mass has been associated with decreased transplantation and increased morbidity and mortality [52].

**Endocrine and Fertility Issues**

Children with CKD often experience impairment of pubertal growth and delayed sexual maturation. Delayed puberty and reduced pubertal growth are most pronounced in children with preexisting severe stunting before puberty, requiring long-term dialysis treatment, and in transplanted patients with poor graft function and high glucocorticoid exposure. In pre-dialysis patients, therapeutic measures to improve pubertal growth are limited and mainly based on the preservation of kidney function and the use of growth hormone treatment [53]. There may also be subsequent fertility issues. Many men exhibit subfertility or infertility due to hypogonadism, erectile dysfunction, direct impairment of spermatogenesis with sperm toxicity, and late-stage maturational arrest causing oligospermia or azoospermia [54]. Fertility may improve post-kidney transplant, but not in all men. Males with infantile cystinosis have hypergonadotropic hypogonadism [55, 56], but testosterone replacement may not always be safe [55]. For women with CKD, contraceptive side effects are more prevalent. CKD and its therapies also affect future fertility. When conception is desired, young women with CKD must plan meticulously because an ill-timed pregnancy can result in disease progression or flare. Certain immunosuppressants like MMF and ACE inhibitors are potentially teratogenic [57, 58]. Among women with CKD, pregnancy risks are substantial, with up to 10-fold higher risk for preeclampsia and 6-fold higher risk for preterm delivery [59, 60]. Pregnancy complications associated with inadequate placentation also increase maternal and newborn risks for cardiovascular morbidity/mortality and progression to kidney failure. As such, it is the obligation of every nephrologist caring for women of reproductive age to provide guidance in the choice of methods to prevent unplanned pregnancies and to choose treatments that preserve fertility [61].

**Metabolic Acidosis, Metabolic Bone Disease, and Growth Issues**

Pediatric CKD patients often suffer from metabolic acidosis, short stature (which in some cases may be due to sodium wasting), hyperparathyroidism, and kidney osteodystrophy. Short stature has multiple etiologies in children with CKD/ESKD including genetic/syndromic factors, parental height, delayed puberty, abnormalities in the insulin-like growth factor, poor response to natural growth hormone, water and electrolyte abnormalities (particularly sodium), prescribed steroids and anemia [62]. Some diseases such as infantile cystinosis cause profound short stature, which heavily impacts the quality of life [63]. Growth hormone therapy is an effective treatment option, but physician and patient adherence is low due to a variety of reasons [64]. This is despite the fact that growth hormone therapy in pediatric CKD patients has been demonstrated to improve final height and it does not worsen the progression of CKD nor is it associated with rejection after kidney transplantation [65]. Males especially have a very low quality of life with short stature, as was shown in a nationwide study comparing the quality of life of young adults with pediatric cancer or CKD (see Fig. 2) [25, 66]. Patient factors (needle phobia), caregiver factors (low focus on final height), and insurance coverage are major barriers for the prescription of recombinant human growth hormone [67].

**Surgical Issues of CKD/ESKD**

These include urological procedures, vesicostomies, gastrostomy tubes, dialysis access (peritoneal catheters, central venous catheters, arteriovenous fistulas, or grafts), and complications such as peritonitis infections, sepsis, and thrombosis. Kidney transplant requires prolonged hospitalization and carries infectious and thrombotic
risks. Parathyroidectomy and orthopedic procedures may be needed for those with uncontrolled metabolic bone disease.

Caregivers

Caregivers not only have to perform their parenting duties but also must promote healthy family environments to allow the adaptation and to reduce frustration, anxiety and grief as much as possible. Caregiver anxiety is a major contributor to depression of the pediatric CKD patient [22]. Additionally, challenges with parenting skills affect how pediatric CKD patients grow up [23]. Caregivers may experience guilt and tendencies to spoil the children and adolescents, rather than making them responsible for their actions or delegating responsibilities of health management. Parenting style matters: permissive or indulgent education leads to inability to be successful in the adult environment, authoritarian education style yields best resilience in a competitive work environment, and authoritative education style leads to the best transition readiness [68]. Caregivers play a significant role in their child’s health knowledge and management of their conditions (Table 2).

Caregiver’s level of role overload (a situation in which the demands of an individual’s roles are beyond their capacity to perform adequately) has been associated with poor outcomes in adolescents. We have demonstrated that caregivers with high levels of role overload may perceive their youth as having lower self-management skills and being less ready to transition to adult-focused care, based on the parent STARx Questionnaire [69]. Our group also has reported that adolescents prefer to learn about their health condition from their parents followed by their providers [68]. We also demonstrated that parents are at almost the same level of disease knowledge as their child, based on the parent version of the TRxANSI-TION Index [70].

HCT Preparation and Self-Management

The process of HCT from pediatric- to adult-focused services has been defined and endorsed by pediatric- and adult-focused nephrology associations [71–73], and models for research and clinical practice have been proposed [74]. HCT preparation must take place both in the pediatric- and adult-focused settings, particularly since the brain is not fully developed until about 25 years of age [75]. Adolescents who prefer to learn from their parents have better adherence, while those who prefer to learn about their health from health providers have better self-efficacy and HCT preparation scores [76]. Barriers and facilitators for HCT have started to be identified in the literature and are discussed in Table 3, along with suggestions to overcome these barriers.
Transition to Adult-Focused Health care

**Monitoring of HCT Readiness**
Tools that measure HCT readiness and have been tested in AYAs with CKD/ESKD are the TRANSITION Index [77], a provider-administered and verified measure and the self-administered STARQ Questionnaire [78, 79]. We have also developed their parent-equivalent surveys (See www.med.unc.edu/transition) [69]. There is another survey for transplant patients (RTQ) [80, 81]. We administer the TRANSITION Index and STARQ Questionnaire annually. With longitudinal observations of over 10 years, we have documented that AYAs achieve self-management skills in their mid-20s, based on the TRANSITION Index [82].

**Equity Issues**
Language and cultural barriers among patients and caregivers need to be considered. In a sample of AYAs with chronic conditions who had public health insurance, we demonstrated that those with a high rate of disease self-management had more life-time emergency depart-

**Pediatric-Focused Specialty and Primary Care Teams**
In many jurisdictions, HCT outcomes are poor and may even involve graft loss or exacerbation of chronic conditions, especially when sub-optimal HCT preparation takes place and patients get lost in the transfer from a more paternalistic to a self-care-oriented approach. The HCT process needs to be carefully planned and continued in the adult-oriented health-care systems. Communication and close collaboration between the patients, caregivers, and primary care/specialty health providers is paramount. AYA patients with CKD/ESKD are particularly challenging, as they need customized HCT preparation based on developmental characteristics in a facility that
<table>
<thead>
<tr>
<th>Barriers</th>
<th>Facilitators</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Patient</strong></td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td>Acknowledge and discuss psychological support and refer to support groups when possible [22]</td>
</tr>
<tr>
<td>Depression</td>
<td>Antidepressants as indicated and refer to psychiatry/psychological care [21]</td>
</tr>
<tr>
<td>Risk behaviors/HRQoL/self-image</td>
<td>Acknowledge and discuss with patient Refer for psychological support [23–25, 28–33]</td>
</tr>
<tr>
<td>Low literacy</td>
<td>Speak with all patients/families using plain language and low-literacy terms</td>
</tr>
<tr>
<td>Cognitive impairment/ADHD</td>
<td>Use cognitive remediations and treatment as needed [18]</td>
</tr>
<tr>
<td>Low academic achievement</td>
<td>Practice constant communication with educators, starting with a letter that describes the cognitive issues of CKD. Request evaluation for an individualized education plan [20, 25]</td>
</tr>
<tr>
<td>Learning about their health condition and diet</td>
<td>Use low-literacy patient education material and offer review discussion, particularly if diagnosis was at an early age. Consider using the following kidney disease and transition education tools: <a href="https://www.med.unc.edu/transition/transition-tools/">https://www.med.unc.edu/transition/transition-tools/</a></td>
</tr>
<tr>
<td><strong>Caregiver</strong></td>
<td></td>
</tr>
<tr>
<td>Caregiver anxiety</td>
<td>Acknowledge and discuss psychological support. Refer to support groups when possible</td>
</tr>
<tr>
<td>Caregiver depression</td>
<td>Have caregiver seek psychiatric/psychological care</td>
</tr>
<tr>
<td>Caregiver role overload</td>
<td>Provide strategies for the caregiver to effectively manage and delegate all duties [68]</td>
</tr>
<tr>
<td>Parenting style of the caregiver</td>
<td>Counsel on effective parenting styles [67]</td>
</tr>
<tr>
<td>Grief/guilt/catastrophizing</td>
<td>Continuously acknowledge these feelings from the time of diagnosis and provide coping strategies/community resources. Refer to caregiver support groups when available</td>
</tr>
<tr>
<td>Caregiver low literacy</td>
<td>For all patients, regardless of education level, speak using plain language and low-literacy terms</td>
</tr>
<tr>
<td>Unwilling to “let go” of health management</td>
<td>Use caregiver HCT readiness surveys [69]. Ask caregiver to start delegating responsibilities for home chores in early childhood and health management starting in early adolescent years [27]</td>
</tr>
<tr>
<td>Caregiver as a resource for their child’s health education</td>
<td>Discuss with caregiver that their child will most likely come to them for health-related questions [74]. Educate caregiver, offering review sessions Consider using the following kidney disease and transition education tools: <a href="https://www.med.unc.edu/transition/transition-tools/">https://www.med.unc.edu/transition/transition-tools/</a></td>
</tr>
<tr>
<td><strong>Providers</strong></td>
<td></td>
</tr>
<tr>
<td>Why is having a HCT/self-management preparation program a priority?</td>
<td>Given the poor outcomes of unprepared patients transferred to adult-focused services (e.g., death or loss of transplant), the International Society of Nephrology and the International Pediatric Nephrology Association have identified HCT preparation as a priority for patient safety and quality improvement [27, 65, 70, 71, 72]</td>
</tr>
<tr>
<td>When to start and end HCT/self-management preparation</td>
<td>Start as early as possible but if limited staff, start at age 15 [81]. The age to end this preparation is in the mid-20s, as during this age, patients can self-manage their condition [80]</td>
</tr>
<tr>
<td>How to do HCT/self-management preparation</td>
<td>Use HCT readiness surveys every 6–12 months to identify skills achieved and areas of deficits [75–78, 79] Train patients based on age and cognitive level [19]</td>
</tr>
<tr>
<td>Where do HCT/self-management preparation activities happen?</td>
<td>They can be done at the in-patient service or outpatient clinics Brief interventions based on deficits and age are ideal, given attention span issues</td>
</tr>
<tr>
<td>Who does the HCT/self-management training?</td>
<td>All health providers during all interactions with patients. This should be an interdisciplinary and coordinated process [73]</td>
</tr>
<tr>
<td>Unfamiliarity with the transition process and preparation</td>
<td>Learn about HCT [70–72] and develop a plan (see <a href="http://www.gottransition.org">www.gottransition.org</a>) Use HCT tools to measure progress and skill acquisition every 6–12 months (see <a href="https://www.med.unc.edu/transition">www.med.unc.edu/transition</a>)</td>
</tr>
<tr>
<td>Low trust in the adult-focused health system by the patient</td>
<td>Identify adult-focused primary care and specialty providers who are comfortable caring for AYAs with CKD/ESRD</td>
</tr>
<tr>
<td>Poor interdisciplinary communication</td>
<td>Utilize discharge letters and medical passports that the patients can carry with them</td>
</tr>
<tr>
<td>Personnel issues</td>
<td>Identify a HCT leader who ideally can serve as a bridge to all health systems</td>
</tr>
<tr>
<td>Billing issues (in the USA)</td>
<td>Develop a billing plan per Got Transition (see <a href="http://www.gottransition.org">www.gottransition.org</a>)</td>
</tr>
</tbody>
</table>
will optimize their quality of life. While Internal Medicine/Pediatrics specialists are particularly qualified to serve transitioning AYAs with chronic conditions, there are not enough providers with this combined training. Family practitioners and pediatric primary care providers have the benefit of long-term relationships with families, but they are also busy providers with short appointment times. As the timing of transition may coincide with moving for post-secondary education, these resources may be lost at the same time. Nonetheless, primary care providers are uniquely suited to bridge some of the needs of AYA patients during the transition period.

Table 3 depicts some of the facilitators and barriers of HCT/self-management preparation as reported in the literature or based on our own longitudinal transition program, at the University of North Carolina Chapel Hill, established in 2006 with collaborators in México (Hospital Infantil de México Federico Gómez), Colombia (Hospital Valle del Lili), and other countries around the world. Important barriers of HCT preparation (e.g., finding adult-focused practices that will accept these AYAs, negotiating the unfamiliar adult health-care system, and poor communication between pediatric- and adult-focused providers or different electronic health record systems), can be addressed by a dedicated interdisciplinary HCT team. The members of this HCT team need to help the patient/family feel comfortable and confident for the transfer to a new facility/team; however, the framework for an effective HCT preparation remains to be validated.

**Table 3** (continued)

<table>
<thead>
<tr>
<th>Barriers</th>
<th>Facilitators</th>
</tr>
</thead>
<tbody>
<tr>
<td>System: Health insurance coverage</td>
<td>Maximize opportunities for funding when possible. Keep in mind that those with public or no insurance (USA) are at a greater risk for low transition readiness</td>
</tr>
<tr>
<td>Pediatric hospital age-cap policies</td>
<td>Advocate for the care of AYAs with CKD/ESKD who have unique comorbidities and special needs, so that chronological age does not determine access to pediatric care</td>
</tr>
<tr>
<td>Being from an underrepresented race or ethnicity</td>
<td>Identify opportunities to optimize the outcomes of these at-risk populations. Use culturally sensitive resources</td>
</tr>
</tbody>
</table>

AYA, adolescents and young adults; HCT, health-care transition; HRQoL, health-related quality of life; ESKD, end-stage kidney disease.

Conclusions

AYAs with CKD/ESKD have significant comorbidities that require close interdisciplinary collaboration between clinical, dental, psychological, and academic teams, in order to achieve successful patient and family outcomes. Taken together, patients with pediatric-onset CKD/ESKD transitioning to adult health care are not only going through a difficult phase of their development, but may face substantial physical and psychological challenges. Those with a longer duration of CKD/ESKD or with associated syndromes are at a greater risk for cognitive impairment. Patients and caregivers may have additional anxieties, as these families face significant financial challenges and burden of care. Providers need to know about the patients’ development (cognitive abnormalities, ADHD, delayed/shortened puberty, and growth failure), in addition to age-related adherence issues, to address disease-specific comorbidities. AYAs with CKD/ESKD often feel out of place in the adult practice setting, due to the great predominance of much older patients. All of these challenges mandate a structured HCT preparation program, starting in early adolescence and continuing in the adult-focused setting, to improve patient outcomes.
Acknowledgements

We wish to thank our patients and their families for guiding us to optimize their care. We are grateful to our parents who taught us about the gift of serving others and our families who support and embrace our professional missions.

Statement of Ethics

Data were not collected from patients or study participants. No primary or original data were used for writing this work.

Conflict of Interest Statement

There are no real, potential, or perceived conflicts of interest to report related to this study. Dr. Díaz-González de Ferris has received grant support from the Renal Research Institute. This content is solely the responsibility of the authors and does not necessarily represent the official views of the Renal Research Institute.

References

21. Hacia la inclusión y el logro de los aprendizajes en el alumnado con necesidades de atención específica y focalizada. Translación: hacia el inclusion and achievement of the students with specific and focused needs. Monterrey, Mexico: Universidad Pedagogica Nacional (UPN).

Blood Purif
DOI: 10.1159/000513520

Díaz-Gonzalez de Ferris et al.


66 Filler G, Diaz-Gonzalez de Ferris M. We have to do more for former paediatric renal transplant recipients!. *Transpl Int.* 2018 Feb;31(2): 152–4.


