Subject Index

Adenovirus
advantages of vector 62, 63
first-generation adenoviruses 63
hepatocyte, gene transfer in metabolic engineering
gene therapy with glucokinase for diabetes type 2 76
glucokinase expression 73–76
glucose-6-phosphatase catalytic subunit expression 78, 79
hexokinase I expression 73, 74
protein targeting to glycogen expression 76, 77
rationale 71, 72
islet β-cell, gene transfer in metabolic engineering
duration of expression 64
efficiency 66
gene transfer 66, 67
hexokinase I expression 73, 74
malonyl CoA decarboxylase expression and long-chain acyl CoA hypothesis 68, 69
phospholipase C isoform expression, phosphoinositide metabolism and insulin secretion 70
rationale 64–66
Aldolase b, hepatocyte nuclear factor-4α requirement for transcription 232

Arginine, insulin and glucagon secretion response in MODY subtypes 10
ATP-sensitive potassium channel, see SUR1/Kir6.2
Autosomal dominant inheritance, MODY 17, 35, 36

β-cell, see Islet β-cell

CDX2/3, gene structure and linkage analysis 85, 89
COUP-TF, phosphoenolpyruvate carboxykinase transcriptional regulation 245, 246
CREB binding protein, hepatocyte nuclear factor-4α interactions 243

Diabetes mellitus type 1
glycogen metabolism in patients, carbon-13 nuclear magnetic resonance 157–159
diabetes mellitus type 1 patients 155, 157
hepatic synthesis during mixed meal ingestion in healthy subjects 159, 161–164
MODY2 patient comparison 153–155
prevalence 197

Diabetes mellitus type 2
digenic causes 204
gene therapy 76
Subject Index
Glucose-6-phosphatase (continued)
reaction and functions 136
subcellular localization 141, 142, 148
topology 136, 142
transport and defects in disease 142, 143
Glucose-stimulated insulin release,
see Islet β-cell
Glucose transporter 2, hepatocyte nuclear
factor-4α requirement for transcription
232, 254, 258
Glycerol kinase, adenovirus gene transfer in
islet β-cell metabolic engineering 67, 68
Glycogen metabolism, carbon-13 nuclear
magnetic resonance
diabetes mellitus type 1 patients 157–159
hepatic synthesis during mixed meal
ingestion in healthy subjects 155, 157
MODY2 patients 159, 161–164
principles 153–155
Glycogen storage disease, glucose-6-
phosphatase translocase mutation in types
Ib and Ic 146–148
GRIP1, hepatocyte nuclear factor-4α
interactions 240–245

Hepatocyte
adenovirus gene transfer in metabolic
engineering
gene therapy with glucokinase for
diabetes type 2 76
glucokinase expression 73–76
glucose-6-phosphatase catalytic subunit
expression 78, 79
hexokinase I expression 73, 74
protein targeting to glycogen expression
76, 77
rationale 71, 72
glucokinase, glucose homeostasis role
implications for hyperglycemia
pathogenesis 132, 133
interplay between hepatic and
pancreatic systems 99–107, 123
transgenic mouse studies 131, 132
islet β-cell metabolism comparison 74, 75
liver composition 219
Hepatocyte nuclear factor, see also specific
factors
regulation by insulin 260, 261
tissue distribution and functional
overview 252, 253
transcriptional interdependence 243, 246,
247, 253, 254
Hepatocyte nuclear factor-1α
diabetes mellitus type 2 mutations
39, 40
hepatocyte nuclear factor-4α in
transcriptional control 243, 246,
247, 254
insulin expression role 254
MODY3
classification 25
clinical characteristics 23, 38
complications 24
mutation types 38, 256, 257
overview 19
pathophysiology 24, 25
penetration of mutations 23, 24
prevalence 23, 25
treatment 24
target genes 259
tissue distribution and functional overview
252, 253
transgenic mouse studies 64, 65
Hepatocyte nuclear factor-1β
MODY5
diabetic phenotype 27, 39
overview 19
renal phenotype 27, 28, 39
tissue distribution and functional overview
252, 253
Hepatocyte nuclear factor-4α
CREB binding protein interactions
243
diabetes mellitus type 2 mutations 40
discovery 219, 220
extraembryonic visceral endoderm
differentiation role 225, 227
discovery 222
gastrulation role 222, 223, 225
rescue of gastrulation arrest in null embryos 229, 230
GATA6 regulation 260
GRIP1 interactions 240–245
hepatic differentiation role 220–222

Subject Index
hepatocyte nuclear factor-1α
 transcriptional control 243, 246, 247, 254
hepatocyte nuclear factor-3
 transcriptional control 260
MODY1
 fasting hyperglycemia at diagnosis 5, 6
gene mutations 230, 235, 257
insulin secretion and response 7–10
linkage analysis 6, 7
marker studies
 factor IX 11
 lipoprotein(a) 11, 13
 screening and counseling 13
 overview 19
pedigree analysis 2–5, 39
phenotypic expression and natural
 history 4–6, 25
prevalence 38, 39
SRC-1 interactions 240–245
structure 220
target genes
cell proliferation and differentiation
genes 256
detoxification genes 256
glucose sensing genes 254, 255
glycolytic enzyme genes 255, 258
identification with knockout mice
 230–232, 257–259
phosphoenolpyruvate carboxykinase
 235–237, 239–247
tissue distribution and functional
 overview 252, 253
transactivation domain fusion protein
 studies 237, 239–243
Hoxkinkase I, adenovirus gene transfer in
 hepatocyte metabolic engineering 73, 74
Insulin
 receptor, see also Insulin receptor substrate
 ligands 210, 211
 signaling proteins 211
 structure 210
tyrosine kinase 209–211
secretion comparison in MODY subtypes
 7–10
 transcriptional control 87
Insulin promoter factor-1
 diabetes mellitus type 2 mutations 40
digenic causes of type 2 diabetes 204
DNA binding specificity, modulation
 protein-protein interactions 188, 190
 somatostatin gene interactions
 188, 190
function in adult islets 172, 173
gene
 mapping 85, 89
 structure 85
 glucose-induced activity, signaling
 190–193
hepatocyte nuclear factor-3β in
 transcriptional control 253
insulin secretion with human gene
 mutation 201, 202
MODY4
 clinical characteristics 26, 39
gene mutation types 202–204, 206
 overview 19
 pathophysiology 26, 27
 prevalence 26
 mutations 39
nuclear translocation 192
pancreas development role
 agenesis mutations in humans
 200–202, 206
 expression levels and distribution
 168, 181, 199, 200
 knockout mouse phenotype 170, 172
 overview 26, 89, 166–168, 181
 transgenic analysis of regulation
 islet-specific expression sequences
 174, 176
 reporter constructs 174
 transactivators 176–178
sequence homology between species 177
structure 199
target genes 172, 181, 185, 188, 253, 254
tissue-specific regulation
 glucocorticoid effects 185, 187, 188
 hepatocyte nuclear factor regulation
 184, 185
temporal expression 183
transcription factors 183, 184
USF binding to E-box element 183
Insulin receptor substrate
flexibility in signaling 213
homology between types 213, 214
IRS-1 discovery 211–213
IRS-2 role in diabetes mellitus type 2
214–216
types 211–214
Islet-1
gene structure and expression 86, 88
linkage analysis 95
pancreas development role 167, 178
structure 87, 88
Islet β-cell
adenovirus gene transfer in metabolic engineering
advantages of vector 62, 63
duration of expression 64
efficiency 66
first-generation adenoviruses 63
gene transfer 66, 67
glucose-6-phosphatase expression 71
glycerol kinase expression and insulin secretion regulation 67, 68
malonyl CoA decarboxylase expression
and long-chain acyl CoA hypothesis 68, 69
phospholipase C isoform expression, phosphoinositide metabolism and insulin secretion 70
rationale 64–66
-glucose stimulated insulin release
ATP, metabolic coupling 105
glucokinase activity index and modeling 101–105
glucokinase in glucose homeostasis 130, 131
insulin resistance and threshold shift 106
threshold 99–101
glucotoxicity 41
hepatocyte metabolism comparison 74, 75
potassium channels, see SUR1/KIR6.2 stimulus/secretion coupling 65, 66
KIR6.2, see SUR1/KIR6.2

Lipoprotein(a), levels in MODY1 11, 13
LMX1
gene structure, cloning, and mapping 86, 90, 91
LMX1B in nail-patella syndrome 91
Malonyl CoA decarboxylase, adenovirus gene transfer in islet β-cell metabolic engineering 68, 69
Maturity-onset diabetes of the young classification 2, 17, 18, 35, 36, 61, 198, 251, 252
definition 16, 17
history of study 1
MODY1, see Hepatocyte nuclear factor-4α
MODY2, see Glucokinase
MODY3, see Hepatocyte nuclear factor-1α
MODY4, see Insulin promoter factor-1
MODY5, see Hepatocyte nuclear factor-1β
molecular genetics in management 13, 30, 31
unknown gene disease, see MODYx
MODY, see Maturity-onset diabetes of the young
MODYx overview 19
phenotype 28
Nail-patella syndrome, LMX1B role 91
NKX2.2, mutations in diabetes 95, 96
NKX6A, gene structure and mapping 86, 91, 92
Nuclear magnetic resonance
glycogen metabolism in patients, carbon-13 studies
insulin resistance and threshold shift in diabetes mellitus type 1 patients 157–159
hepatic synthesis during mixed meal ingestion in healthy subjects 155, 157
MODY2 patients 159, 161–164
principles 153–155
Pancreas development
insulin promoter factor-1 role
agenesis mutations in humans
200–202, 206
background 26, 89, 166–168, 181
expression levels and distribution
168, 181, 199, 200
knockout mouse phenotype 170, 172
transgenic analysis of regulation
islet-specific expression sequences
174, 176
reporter constructs 174
transactivators 176–178
islet-1 role 167, 178
overview 166–168
PAX4
gene structure 93
mutations in diabetes 93, 94
PAX6 homology 86, 87
structure 92
PDX-1, see Insulin promoter factor-1
Phosphoenolpyruvate carboxykinase
COUP-TF regulation 245, 246
hepatocyte nuclear factor-4x in
transcription 235–237, 239–247
Phospholipase C, adenovirus gene transfer
in islet β-cell metabolic engineering
70
Potassium channel, see SUR1/Kir6.2
Protein targeting to glycogen, adenovirus
expression in hepatocytes 76, 77
Somatostatin gene, insulin promoter factor-1
interactions 188, 190
SRC-1, hepatocyte nuclear factor-4x
interactions 240–245
Sulfonylurea receptor, see SUR1/Kir6.2
SUR1/Kir6.2
comparison with SUR2/Kir6.2 channels
45, 47
Kir6.2
amino-terminal deletion in heteromeric
channels
ATP sensitivity of channels 50, 51
continuous bursting of channel
48–50
ATP-binding site 55
ATP-inhibitory gating, cooperation of
termi 56, 58
carboxy-terminal deletion in
homomeric channels
ATP sensitivity 51–53, 55
bursting behavior 52, 53
modeling 58
mutation in persistent hyperinsulinemic
hypoglycemia 44
regulation of insulin release 44, 45
sulfonylurea inhibition and diabetes
treatment 44, 58
SUR segments determining bursting
patterns and ATP sensitivity 45, 47, 48
Transgenic mouse
glucokinase studies
Cre-loxP gene targeting strategy
126, 127
hepatocyte analysis 131, 132
islet β-cell knockout effects 127, 128
global knockout effects 127, 128
liver knockout effects 129, 130
overexpression effects 123, 124, 126
phenotype 37
hepatocyte nuclear factor-1α analysis
64, 65
hepatocyte nuclear factor-4x
rescue of gastrulation arrest in null
embryos 229, 230
target gene identification with knockout
mice 230–232, 257–259
insulin-promoter factor-1, analysis of
regulation
islet-specific expression sequences
174, 176
knockout mouse phenotype 170, 172
receptor constructs 174
transactivators 176–178
Tyrosine kinase, see Insulin receptor
USF, binding to insulin-promoter factor-1
E-box element 183