Proteins, Peptides and Amino Acids in Enteral Nutrition
First row f.l. Corinne Bouteloup, Bernard Beaufèbre, Steven Freedman, David Joe Millward, George Grimble, Alan Jackson, Vernon R. Young, Paolo Tessari, Peter Fürst, Cléa Ruffier, Paul-André Finot, Catherine Bailly, Peter Reeds, Denis Breuillé.

Proteins, Peptides and Amino Acids in Enteral Nutrition

Peter Fürst, Stuttgart, Germany
Vernon Young, Cambridge, Mass., USA
Contents

VII Preface

XI Foreword

XIII Contributors

1 Proteins, Peptides and Amino Acids in Enteral Nutrition: Overview and Some Research Challenges
 V.R. Young (Cambridge, Mass.), Y.-M. Yu (Boston, Mass.) S. Borgonha (Cambridge, Mass.)

25 Role of the Gut in the Amino Acid Economy of the Host
 P.J. Reeds, D.G. Burrin, B. Stoll, J.B. van Goudoever (Houston, Tex.)

47 Regulation of Splanchnic Protein Synthesis by Enteral Feeding
 P. Tessari (Padua)

63 Mechanisms of Peptide and Amino Acid Transport and Their Regulation
 G.K. Grimble (London)

89 Nitrogen Trafficking and Recycling Through the Human Bowel
 A.A. Jackson (Southampton)
Contents

109 Physicochemical Considerations of Protein Utilization
P.A. Finot (Lausanne)

121 The “Fast” and “Slow” Protein Concept
B. Beaufrère (Clermont Ferrand), M. Dangin (Clermont Ferrand/Lausanne),
Y. Boirie (Clermont Ferrand)

135 Postprandial Protein Utilization: Implications for Clinical Nutrition
D.J. Millward (Guildford)

157 Catabolic States and Immune Dysfunction: Relation to Gastrointestinal Feeding
K.A. Kudsk (Memphis, Tenn.)

173 Cysteine and Glutathione in Catabolic States
D. Breuillé (Lausanne), C. Obled (Saint-Genès-Champanelle)

199 Conditionally Indispensable Amino Acids (Glutamine, Cyst(e)ine, Tyrosine, Arginine, Ornithine, Taurine) in Enteral Feeding and the Dipeptide Concept
P. Fürt (Stuttgart)

221 Tolerance and Utilization of Enteral Nitrogen
U.G. Kyle, P. Jolliet, L. Genton and C. Pichard (Geneva)

239 Role of Enteral Nutrition in the Pathophysiology and Treatment of Pancreatitis and Cystic Fibrosis
S.D. Freedman (Boston, Mass.)

247 Nutrition in Renal Failure – the Role of Enteral Feeding
J. Bergström (Stockholm)

257 Proteins, Peptides and Amino Acids: Which and When?
D.B.A. Silk (London)

275 Closing Remarks

279 Subject Index
Preface

Growth in the young and maintenance in the adult are complex, genetically orchestrated, metabolic processes that require adequate intakes of substrates and specific cofactors. Among the former are the indispensable and conditionally indispensable amino acids and a source of utilizable nitrogen required for the synthesis of physiologically important nitrogen-containing compounds, such as the purines and pyrimidines, creatine and the polyamines. Furthermore, a \textit{sine quo non} of the stress response, triggered either by infection, trauma or other diseases and possibly by clinical interventions is an increased rate of loss of nitrogen from the body. This leads to negative nitrogen balance and, if prolonged or profound, it adversely affects clinical outcome. Again, an adequate, or possibly an enriched, dietary source of these nutrients is needed to counteract the losses of nitrogen and to promote wound repair and protein repletion of tissues and organs.

With the discovery of common and specific mechanisms for alterations in substrate metabolism, unique opportunities arise to intervene in the disease process. Undoubtedly, the efficacy of providing functional substrates to the injured, immunocompromized and/or malnourished host has caused a rebirth and awakening in the clinical application of dietary intervention in the treatment and prevention of disease.

The importance of adequate nutritional support as a component of the comprehensive clinical management of patients is now widely appreciated and over the past two decades significant advances have been made in enteral feeding techniques. Primarily, there has been a major shift from intravenous towards enteral administration. Secondly, there have been major changes in the content and protein/energy mix of the formulations used. The most striking findings, however, relate to the use of specific nutrient substrates to supplement standard
Preface

enteral diets. However, the most clinically effective and cost-effective form of nutritional therapy, including the form and amount of proteins, amino acids and/or peptides, for patients with gastrointestinal diseases, wasting conditions and in the critically ill, for example, remains to be determined from research-based evidence. Therefore, this 3rd Nestlé Nutrition Workshop, ‘Proteins, Peptides and Amino Acids in Enteral Nutrition’, brought together investigators who have made important contributions to an understanding of the physiology and nutritional biochemistry of proteins, peptides and amino acids and/or the application of this knowledge and evaluation of these nutrients in various clinical settings. The focus of this workshop was on the nitrogen component of enteral nutrition and attention was given to the current understanding of the roles that intact proteins, peptides and/or free amino acids play in nutritional physiology and their clinical corollaries. Its overall remit and challenge were (i) to critically review and update knowledge on the utilization, metabolic fate and function of ingested protein, peptides and/or amino acids; (ii) to consider the consequences of disease states on their metabolism, utilization and functional attributes; (iii) to integrate and use this information with respect to the formulation and use of enteral nutrition in the support of hospitalized patients or of other individuals who might benefit from this feeding modality, and (iv) to identify needed areas of research.

The workshop began with a series of papers on the physiology and metabolism of proteins, amino acids and peptides. New knowledge about the factors that influence, and the mechanisms involved in, the uptake and immediate metabolic processing of ingested proteins or their components was reviewed. From the standpoint of protein and amino acid enteral nutrition, it is now evident that the intestine plays a key regulatory role in the overall amino acid and nitrogen economy of the host and that this new or expanded understanding has importance in the optimal formulation of nitrogen-containing enteral products. This initial series of papers was then followed by an assessment of the impact of various diseases on metabolism and the roles of intact proteins, peptides and amino acids in the support and maintenance of amino acid and nitrogen homeostasis under these conditions. Questions of tolerance to and the efficacy of different molecular forms in which nitrogen might be supplied to patients were addressed and these topics made for lively discussions. There is much more to learn about the impact of the molecular form of nitrogen supply on the status of protein and amino acid metabolism and its roles as a determinant in the utilization of ingested protein and its products of digestion. While there was little debate about the positive clinical value of intact sources of protein in the nutrition of patients requiring enteral feeds, it was less clear about the extent to which various peptide forms and/or mixtures of free amino acids or the supplemental role of specific amino acids might offer a significant clinical benefit under defined clinical situations. The challenges of conducting well-controlled clinical studies together with the need to carry out prospective clinical trials to close this gap in our knowledge were all too obvious. Certainly, the development of suitable and new enteral products
would promote the understanding process and their use might be associated with improved clinical outcome.

We believe that, despite these uncertainties, this workshop has contributed to a better definition of the problems associated with the qualitative and quantitative aspects of the supply of nitrogen-containing substrates in enteral nutrition. We hope that the proceedings will be of value in promoting interest and understanding among the practitioners, clinical and basic scientists towards an advanced clinical nutrition. It is also hoped that these proceedings will help set an appropriate course for, as well as stimulate, further research and discussion on proteins, peptides and amino acids in enteral nutrition.

Peter Fürst, Vernon R. Young
Foreword

The workshop on ‘Protein, Peptides and Amino Acids in Enteral Nutrition’ focuses both on basic science and applied clinical research. The clinical relevance of sound basic scientific concepts needs to be established. Amino acids and catabolism contribute to the energy needs of the mucosa, which should have an impact on future amino acid compositions of enteral nutrition products. Peptide transport is resistant to stress of disease, which is in contrast to amino acid transport. It seems, therefore, necessary to clearly define the clinical role of amino acid solutions in enteral feeding. Fast- and slow-digestible proteins influence gastric emptying and are absorbed in different parts of the small intestine. They might therefore be important to regulate appetite, satiety as well as metabolic outcome.

Applied clinical research focuses mainly on tolerance, safety and efficacy of newly developed products. New products must be useful for their given purpose. Segmentation of the enteral product range can be helpful to treat specific diseases, but confusion may result as to specific ‘niche’ product utilization, if the indication is not clearly clinically established. Therefore, further clinical studies will be necessary to prove the basic scientific concepts. In the past, poor experimental design and no clear endpoints sometimes hampered clinical trials focusing on the protein source of enteral nutrition products. A discussion between representatives of basic science with clinicians will therefore be useful to design future trials on protein quality in enteral products.

I would like to take this opportunity to thank the Chairmen, Professors Peter Fürst and Vernon Young, for their contribution to this workshop as well as the
Foreword

participants. Our thanks to the Nestlé team who organized the workshop, in particular to Mr. Alexander Jost in Sweden and Dr. Philippe Steenhout at the center, who helped to set up this workshop.

Prof. Ferdinand Haschke, MD
Vice-President
Nestec Ltd., Vevey, Switzerland
Contributors

Speakers

Bernard Beaufrère
Laboratoire de Nutrition Humaine
Centre de Recherche en Nutrition
58, rue Montalembert
B.P. 321
F-63009 Clermont-Ferrand Cedex 1
France
Tel. +33 4 73 60 8250
Fax +33 4 73 60 8255
E-Mail: beaufrer@clermont.inra.fr

Jonas Bergström
Karolinska Institutet
Department of Clinical Science
Huddinge University Hospital K-56
SE-141 86 Huddinge, Sweden
Tel. +46 8 585 83 981
Fax +46 8 711 4742
E-Mail: jonasbergstrom@kfcmail.hs.sll.se

Denis Breuillé
Centre R&D Nestlé
INRA Theix
F-63122 St Genès Champarelle, France
Tel. +33 4 7362 4210
Fax +33 4 7362 4755
E-Mail: breuille@clermont.inra.fr

M. Paul-André Finot
Nestlé Research Center
Vers-chez-les-Blanc
Case postale 44
CH-1000 Lausanne, Switzerland
Tel. +41 21 785 8794
Fax +41 21 785 8925
E-Mail: paul-andre.finot@rdls.nestle.com

Steven D. Freedman
Pancreaticobiliary Center Division of Gastroenterology
Beth Israel Deaconess Medical Center
Dana 501, 300 Brookline Avenue
Boston, MA 02215, USA
Tel. +1 617 667 5576
Fax +1 617 617 2767
E-Mail: sfreedman@caregroup.harvard.edu
Contributors

Peter Fürst
Universität Hohenheim
Institut for Biological Chemistry and Nutrition
Garbenstrasse 30
D-70599 Stuttgart, Germany
Tel. +49 711 459 2290
Fax +49 711 459 2283
E-Mail: b-c-nutr@uni-hohenheim.de

George Grimble
MSc Programme Convenor School of Life Sciences
Roehampton Institute London
Whitelands College
West Hill
London SW15 3SN, UK
Tel. +44 181 392 3567
Fax +44 8392 3527
E-Mail: g.grimble@roehampton.ac.uk

A.A. Jackson
University of Southampton
Department of Nutrition
Highfield
SO17 1bH Southampton, UK
Tel. +44 2380 794 317
Fax +44 2380 794 945
E-Mail: a.a.jackson@soton.ac.uk

Kenneth Kudsk
University of Tennessee Memphis
College of Medicine
Department of Surgery
956 Court Avenue, Room E228
Memphis, TN, 38163, USA
Tel. +1 901 448 8370
Fax +1 901 448 7396
E-Mail: kkudsk@utmem1.utmem.edu

David Joe Millward
University of Surrey
School of Biological Sciences
GU2 5XH Guildford, Surrey, UK
Tel. +44 1483 259 297
Fax +44 1483 259 297
E-Mail: d.millward@surrey.ac.uk

Claude Pichard
Head, Clinical Nutrition
University Hospital
Av. Micheli-du-crest 24
CH-1211 Geneve 14, Switzerland
Tel. +41 22 372 9345
Fax +41 22 372 9363
E-Mail: pichard@cmu.unige.ch

Peter Reeds
USDA/ARS Children’s Nutrition Research Center
Baylor College of Medicine
1100 Bates
Houston, TX, 77030, USA
Tel. +1 713 798 7148
Fax +1 713 798 7171
E-Mail: preeds@bcm.tmc.edu

David B.A. Silk
Department of Gastroenterology and Nutrition
Central Middlesex Hospital NHS Trust
Acton Lane
NW10 7NS London, UK
Tel. +44 181 453 2205
Fax +44 181 961 1317

Paolo Tessari
Dip. di Medicina Clinica e Sperimentale
Cattedra di Malattie del Metabolismo
Policlinico
Via Giustiniani 2
I-35128 Padova, Italy
Tel. +39 049 821 2183
Fax +39 049 875 4179
E-Mail: ptessari@ux1.unipd.it

Vernon R. Young
Laboratory of Human Nutrition M.I.T.
Room E17-434
77 Massachusetts Ave.
Cambridge, MA, 02139, USA
Tel. +1 781 235 0028
Fax +1 781 235 0028
E-Mail: vryoung@mit.edu

XIV
Contributors

Participants

<table>
<thead>
<tr>
<th>Country</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>Jean Ruffier, Cléa Ruffier</td>
</tr>
<tr>
<td>Chili</td>
<td>Oscar Brunser</td>
</tr>
<tr>
<td>Denmark</td>
<td>Kim Fleischer, Michalsen</td>
</tr>
<tr>
<td>Finland</td>
<td>Olli Simell</td>
</tr>
<tr>
<td>France</td>
<td>Corinne Bouteloup, Pierre Déchelotte, Raynald Lagel</td>
</tr>
<tr>
<td>Germany</td>
<td>Herbert Lochs, Dieter Schwab</td>
</tr>
<tr>
<td>Great Britain</td>
<td>S. Gosh, Christopher Hayward</td>
</tr>
<tr>
<td>Great Britain</td>
<td>Kent Lundholm, Nils Räihä, Jan Wernerman</td>
</tr>
<tr>
<td>Italy</td>
<td>Carlo Lesi, Paolo Pallini, Augusta Palmo</td>
</tr>
<tr>
<td>Italy</td>
<td>Christian Braegger</td>
</tr>
<tr>
<td>Mexico</td>
<td>Alfonso Fajardo, Rodriguez</td>
</tr>
<tr>
<td>Mexico</td>
<td>Chulaporn, Roongpisuthipong</td>
</tr>
<tr>
<td>Norway</td>
<td>Beint Bentsen</td>
</tr>
<tr>
<td>Norway</td>
<td>Saayda Bev Becher</td>
</tr>
<tr>
<td>Philippines</td>
<td>Luisito Llido</td>
</tr>
<tr>
<td>Philippines</td>
<td>Paul E. Bankey, Adrian Barbul, John Kinney, Pamela Roberts</td>
</tr>
<tr>
<td>Sweden</td>
<td>Bengt Jeppsson, Jörgen Larsson</td>
</tr>
</tbody>
</table>

Nestlé attendees

<table>
<thead>
<tr>
<th>Attendees</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Franck Arnaud-Battandier / France</td>
<td>France</td>
</tr>
<tr>
<td>Catherine Bailly / Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Julio Boza / Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Kjerstin Carlsson / Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Anne-Lise Carrié / Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Susan Derryberry / USA</td>
<td>USA</td>
</tr>
<tr>
<td>Robert Dobbie / USA</td>
<td>USA</td>
</tr>
<tr>
<td>Bianca-Maria Exl / Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Clara García-Rodenas / Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Giorgio Giroli / Italy</td>
<td>Italy</td>
</tr>
<tr>
<td>Ferdinand Haschke / Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Kathy Hennessy / USA</td>
<td>USA</td>
</tr>
<tr>
<td>Evangelos Kaloussis / Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Claudia Roessle / Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Philippe Steenhout / Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Christine Verillotte / Switzerland</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Terri Voss / USA</td>
<td>USA</td>
</tr>
</tbody>
</table>