Aceruloplasminemia, iron transport defects 254, 261
Acetyl-L-carnitine, Alzheimer disease studies 269
S-Adenosylmethionine metabolism 210
supplementation 217
Adiposity signals
amylin 99
central control systems 100–102
conjoined animal studies 97
insulin
evidence 98, 99
receptor expression in brain 98, 100
response proportionality to body fat 97, 98
interaction with signals controlling meal size 102–104
leptin 99, 100, 112, 113
Affective disorder, see Depression
Aggression
albumin load test and plasma amino acids 140
amino acids in plasma and cerebrospinal fluid 145, 146
Aging, see also Alzheimer disease
arcuate nucleus changes 114
atrophic gastritis and consequences 202, 203, 214
Agouti-related peptide, appetite stimulation 102
Alcohol, see Ethanol
Aluminum
Alzheimer disease role 225, 226, 229, 256, 257
cell damage mechanisms 247, 248
dialysis dementia role 229
Alzheimer disease aluminum role 225, 226, 229, 256, 257
antioxidant therapy
central nervous system levels of antioxidants 222
clinical trials 222, 223, 265–267, 277, 279
epidemiological studies 222
Apo-E role 228–230, 263, 265
cyclooxygenase-2 expression induction 268
tryptophan levels 151, 152
vitamin B deficiency
cognitive dysfunction studies 204–209
homocysteine as marker 210, 214, 215
intervention 211
one-carbon metabolism and brain function 204, 210
prevalence 203
Agouti-related peptide, appetite stimulation 102
Alcohol, see Ethanol
Aluminum
Alzheimer disease role 225, 226, 229, 256, 257
cell damage mechanisms 247, 248
dialysis dementia role 229
Alzheimer disease aluminum role 225, 226, 229, 256, 257
antioxidant therapy
central nervous system levels of antioxidants 222
clinical trials 222, 223, 265–267, 277, 279
epidemiological studies 222
Apo-E role 228–230, 263, 265
cyclooxygenase-2 expression induction 268
tryptophan levels 151, 152
vitamin B deficiency
cognitive dysfunction studies 204–209
homocysteine as marker 210, 214, 215
intervention 211
one-carbon metabolism and brain function 204, 210
prevalence 203
Agouti-related peptide, appetite stimulation 102
Alcohol, see Ethanol
Aluminum
Alzheimer disease role 225, 226, 229, 256, 257
cell damage mechanisms 247, 248
dialysis dementia role 229
Alzheimer disease aluminum role 225, 226, 229, 256, 257
antioxidant therapy
central nervous system levels of antioxidants 222
clinical trials 222, 223, 265–267, 277, 279
epidemiological studies 222
Apo-E role 228–230, 263, 265
cyclooxygenase-2 expression induction 268
tryptophan levels 151, 152
vitamin B deficiency
cognitive dysfunction studies 204–209
homocysteine as marker 210, 214, 215
intervention 211
one-carbon metabolism and brain function 204, 210
prevalence 203
Agouti-related peptide, appetite stimulation 102
Alcohol, see Ethanol
Aluminum
Alzheimer disease role 225, 226, 229, 256, 257
cell damage mechanisms 247, 248
dialysis dementia role 229
Alzheimer disease aluminum role 225, 226, 229, 256, 257
antioxidant therapy
central nervous system levels of antioxidants 222
clinical trials 222, 223, 265–267, 277, 279
epidemiological studies 222
Apo-E role 228–230, 263, 265
Alzheimer disease (continued)
 cholinergic transmission, dietary modulation 269, 280
 copper role 253, 260
 endpoints for studies 280, 281
 energy restriction studies in animal models 277–279
 epidemiology 219
 ethanol effects 272, 273
 fish oil studies 230, 267, 268
 gene mutations 264, 265
 glucose enhancement of memory 270, 271
 hyperhomocysteinemia as risk factor
 aging levels 211, 271
 epidemiology 223, 224, 272
 mechanisms 224, 228
 vitamin B supplementation for management 224, 225, 271, 272
 inflammation, dietary modulation 267–269
 iron role 255, 260
 magnetic resonance imaging markers 229
 memory deficit vs dementia 219
 oxidative stress hypothesis
 brain damage 220
 free radical damage mechanisms 220–222
 phytoestrogen studies 269, 270, 277
 plaque formation 264, 265
 vascular dementia association 264
 Amphetamine, appetite suppression 121
 Amylin, adiposity signal 99
 Anandamide
 cannabinoid receptor binding 169, 171
 effects
 analgesia 175
 gut motility 174
 hypotension 174, 175
 memory 173, 174
 sedation 174
 food analysis for ligands
 behavioral testing in mice 176, 177, 179
 extraction 176
 food types 175, 176
 gas chromatography-mass spectrometry 176
 high-performance liquid chromatography 176
 implications 181, 185
 table of analysis 178
 synthesis 173
 Anemia, see Iron deficiency anemia
 Anorexia nervosa
 B vitamin deficiency 160, 161
 bulimia nervosa relationship 153, 154
 cerebrospinal fluid 5-HIAA levels 157, 166
 clinical features 153, 166
 etiology 154
 persistent psychological problems following recovery 155
 prevalence 154
 psychotherapy 167
 serotonin
 dietary tryptophan effects 158–160
 neuronal activity 156, 157, 167
 nutritional factors in treatment 160, 161, 166
 postsynaptic antagonist therapy 165, 166
 receptor variants 168
 refeeding effects 158
 selective reuptake inhibitor therapy 159–161, 165
 sex steroid roles 167
 twin studies 167
 zinc status 160
 Apo A-IV, appetite suppression following fat intake 77, 78
 Apo-E, Alzheimer disease role 228–230, 263, 265
 Appetite suppression, see Carbohydrate, appetite suppression, Fat, appetite suppression, Specific agents and signals
 Arachidonylglycerol, see Cannabinoid receptors
 Arcuate nucleus
 aging effects 114
 central control of appetite 100–102
 Aspartame
 depression effects 142, 143, 148, 149
 metabolism 142, 148
Atrophic gastritis
 aging patients and consequences 202, 203, 214
 prevention 214
Auditory brainstem response, iron
deficiency anemia effects in infants 22, 23
Autonomic nervous system
 breast feeding vs bottle feeding
 effects in infants 63, 64
 iron deficiency anemia effects
 heart rate variability 26, 27
 stress response 38
 vagal tone 27, 28
 parasympathetic vs sympathetic nervous system development 26
Bombesin, appetite control 95
Boron
 cell damage mechanisms 247, 248, 257, 258
 deficiency 257, 258
Brain, see Mental development
Bulimia nervosa
 anorexia nervosa relationship 153, 154
 cerebrospinal fluid 5-HIAA levels 157
 clinical features 153
 depression and tryptophan depletion 137
 etiology 154
 persistent psychological problems following recovery 155
 prevalence 154
 serotonin
 neuronal activity 156, 157
 refeeding effects 158
 tryptophan depletion effects 159
Cannabinoid receptors
 endogenous ligands, see also Anandamide
 acylethanolamines 171, 172
 arachidonyleglycerol 172
 effects
 analgesia 175
 gut motility 174
 hypotension 174, 175
 immune system 185
 memory 173, 174
 sedation 174
 oleamide 172
 structures 170
 synthesis and degradation 173
 types 169
 evolution of signaling 171
 food analysis for ligands
 anandamide 177
 arachidonyleglycerol 179
 behavioral testing in mice 176, 177, 179
 chocolate processing effects 186
 extraction 176
 food types 175, 176
 gas chromatography-mass spectrometry 176
 high-performance liquid chromatography 176
 implications 181, 185
 oleamide 179, 181, 185
 table of analysis 178
 knockout mice 186
 tissue distribution of CB1 171, 181
 Carbohydrate, appetite suppression
direct preabsorptive feedback
 cholecystokinin role 74–76
 glucagon-like peptide-1 role 78, 79
 intestinal infusion studies 73, 74
 vagal afferent activation 74
disease states 88, 89
 integration of signals 86
 overview 73
postabsorptive metabolic feedback
 central nervous system monitoring
 of glucose utilization 82
 fructose 83
 glucose utilization feedback control 79
 hepatic monitoring of glucose utilization and signaling pathways 81, 82
 lactic acid signaling 82
 parenteral administration studies 79
 CARDIAC study, see Stroke
Cholecystokinin
 adiposity signal interactions 103, 104
 agonists and antagonists 95
 appetite suppression following meal intake 74–76, 88, 89, 95
 plateau of effect 112

Subject Index

Cholesterol, levels in depression 146
Choline, Alzheimer disease supplementation 269, 280
Chromium
cell damage mechanisms 247, 248
deficiency 257
Ciracadian rhythm, see also Sleep-wake cycle
decline activity 30
iron deficiency anemia effects 30, 31, 38
measurement in humans 30, 31
overview 28, 29, 60
sleep-wake cycle 30, 41, 60
Cirrhosis
hepatic encephalopathy 284, 305
hyperinsulinemia 304, 305
protein catabolism 303, 304
Cognition, see Aging, Alzheimer disease, Mental development
Copper
Alzheimer disease role 253, 260
cell damage mechanisms 247, 248
deficit effects on brain 251, 258
familial amyotrophic lateral sclerosis role 251–253
Menkes disease 250
prion disease role 253, 254
Wilson disease 250, 251, 261
Cyclooxygenase-2, expression induction in aging 268
Depression
albumin load test and monoamine precursor plasma amino acids 138, 139, 141
aspartame effects 142, 143, 148, 149
cholesterol levels 146
folic acid in mood regulation 146
homocysteine levels 211
monoamine hypothesis 135, 136
morbidity 135
noradrenaline
inhibitor studies 137, 138
tyrosine depletion effects 138
oral contraceptives
pyridoxal phosphate deficiency effects 141, 142
tyrosine levels 140, 141
prevalence 135
serotonin
bulimia nervosa and tryptophan depletion 137
dietary tryptophan effects on synthesis 136, 137
seasonal affective disorder and tryptophan depletion 137
Diabetic ketoacidosis, see Hyperglycemia
Docosahexaenoic acid
action potential effects in membranes 56
Alzheimer disease supplementation studies 230
gene expression regulation 53, 54
human milk content 71
membrane property effects 54, 55, 58
photoreceptor signal transduction role 55, 56, 58
red blood cell content 58
retinal maturation role 52, 53
vision function effects in infants 56–58, 71
Dopamine
appetite suppressant mechanisms 119, 121
dietary effects on brain levels
protein ingestion 127, 128
tyrosine concentrations in brain 127
neurons in brain 118–120
reuptake 119
sleep-wake cycle role 199
Dyslipidemia, ketogenic diet 316, 319, 320
Encephalopathy, see Hepatic encephalopathy, Hyponatremia, Uremic encephalopathy
Endocannabinoids, see Anandamide, Cannabinoid receptors
Enterostatin, appetite suppression following fat intake 76, 77
Epilepsy
anticonvulsants 307, 318, 319
course 307
dietary control, see Ketogenic diet
Epinephrine
appetite suppressant mechanisms 119
neurons in brain 118–120
reuptake 119
Estrogen
Alzheimer disease, effects of replacement therapy 269, 270
menopausal obesity 115
Ethanol
dementia effects in aging 272, 273
effects on homocysteine levels 217, 228
effects on thyroid hormone responses in development 52
Etomoxir, stimulation of appetite 84, 88
Familial amyotrophic lateral sclerosis, copper role 251–253
Fat, appetite suppression
direct preabsorptive feedback
 Apo A-IV role 77, 78
 cholecystokinin role 74–76, 88, 89
 enterostatin role 76, 77
 glucagon-like peptide-1 role 78, 79
 intestinal infusion studies 73, 74
 vagal afferent activation 74, 89
disease states 88, 89
integration of signals 86
overview 73
postabsorptive metabolic feedback
central pathways 85, 86
fatty acid oxidation
 hepatic monitoring 84, 85
 inhibitor stimulation of appetite 83, 84, 90
galanin role 85
parenteral administration studies 79
Fenfluramine, mechanism of appetite suppression 119, 121, 122
Fiber, appetite suppression 89
Folic acid
carriers and binding proteins 47, 48
deficiency in aging
cognitive dysfunction studies 204–209
homocysteine as marker 210, 214, 215
intervention 211
prevalence 203
homocysteine level reduction 271, 272
metabolism 47
methylenetetrahydrofolate reductase
 mutations in neural tube defects 47
mood regulation 146
neural tube defect prevention 46, 47
neurological manifestations of deficiency 201, 202
one-carbon metabolism and brain function 204, 210
retinoic acid transcriptional regulation of receptor 48
Food intake, body fat relationship 95–97
Fos, immunoreactivity in brain areas following feeding 192, 194
Friedreich ataxia, iron role 254, 255
Galanin, appetite suppression following fat intake 85
Gastrin-related peptide, appetite control 95
Ginkgo biloba, Alzheimer disease trials 223, 266, 267
Glomerular filtration rate
 hemodynamic response to infused amino acids 291
 renal failure 290, 291
Glucagon, appetite control 95
Glucagon-like peptide-1, appetite suppression following meal intake 78, 79
Glucose, enhancement of memory 270, 271, 279
Glutamine, appetite effects 131
Hepatic encephalopathy
 ammonia effects on brain 288, 289
 branched-chain amino acid supplementation 289, 290, 305, 306
cirrhosis 284, 305
fat in diet 304
glutamine metabolism 305
muscle weakness 306
neurotoxic amino acid metabolites 287, 288
pathogenesis
 amino acid concentrations 284, 285
dualistic complex 283, 284
hyperammonemia 284–286, 288
Homocysteine
- alcohol effects on levels 217, 228
- Alzheimer disease, hyperhomocysteinemia as risk factor
 - aging levels 211, 271
 - epidemiology 223, 224, 272
 - mechanisms 224, 228
 - vitamin B supplementation for management 224, 225, 271, 272
- cardiovascular disease risks 215
- choline regulation of levels 216
- dialysis dementia role 229
- formation 210
- hyperhomocysteinemia causes 214, 216
- neurocognitive dysfunction correlation in aging 210, 211, 214, 215

Hyperglycemia
- diabetic ketoacidosis pathogenesis 295, 296
- hyperglycemic hyperosmolar nonketotic syndrome pathogenesis 295, 296
- management 296, 297

Hypernatremia
- cerebral symptoms 297
- treatment 297, 298
- urine concentration in dehydration 297

Hypoglycemia, ketogenic diet association
315

Hyponatremia
- cerebral symptoms 297
- encephalopathy 299
- extracellular fluid changes 298, 299
- treatment 299

Hypophosphatemia
- incidence 299, 300
- mechanisms 300
- treatment 300

Insulin, adiposity signal
- evidence 98, 99
- receptor expression in brain 98, 100
- response proportionality to body fat 97, 98

Iodine
- deficiency and mental retardation 48, 49, 70
- thyroid hormone in brain development, see Thyroid hormone
- Iodothyronine deiodinase, activity coordination in development 51

Iron
- aceruloplasminemia transport defects 254, 261
- Alzheimer disease role 255, 260
- cell damage mechanisms 247, 248
- fortification 262
- Friedreich ataxia role 254, 255
- Parkinson disease role 255, 256, 260

Iron deficiency anemia
- auditory system functioning effects
 - auditory brainstem response in infants 22, 23
 - language development implications 23, 24, 39
 - neurotransmitter alterations 22
 - rat models 22, 37
- autonomic nervous system functioning effects
 - heart rate variability 26, 27
 - stress response 38
 - vagal tone 27, 28
- circadian rhythm effects 30, 31, 38
- cognitive effects in development
 - animal models 20, 21
 - controls in studies 36, 37
 - mechanisms 20, 36
 - myelination impairment 21, 24
 - neurofunctional maturation patterns 20, 21
- testing 20
- prevalence 19
- visual system functioning effects
 - cognitive development implications 26
 - stereoaucity 24
 - Vernier acuity 24
 - visual evoked potentials 24, 25, 29

Ketogenic diet
- animal models 321
- calculation of diet 310–312
- cancer patients 319
- compliance 310
- complications
 - acidosis 315, 316
 - cardiac complications 319, 320
dyslipidemia 316, 319, 320
growth of children 316
hypoglycemia 315
kidney stones 316
fatty acid catabolism 314
focal seizure patients 321
historical perspective 307–309
initiation 310, 311
mechanism of seizure control 314, 315
mental development effects 320, 321
protein intake 319
seizure management and outcomes 308–310, 312, 313, 318, 319
supervision 310
supplements 312

Lateral hypothalamic area, appetite control 102

Leptin
adiposity signal 99, 100, 112, 113
resistance 113
synthesis by fat site 113

Long-chain polyunsaturated fatty acids, see Docosahexaenoic acid

Malnutrition, see also Iron deficiency anemia
diagnosis in children 1
electroencephalographic alterations 41
fertility impact 17
mental development impact
 adoption studies 9, 10
 adults 15
 assessment tools 17
 cognitive function mechanisms 3, 41
 intrauterine growth retardation 16
 low birth weight babies 6, 8, 16
 moderate undernutrition and timing effects 5, 6
 school age children 10, 11
 severe undernutrition effects 3, 4
 small for gestational age babies 6, 8, 16, 17
 socio-economic factors 2, 15, 18
 supplementation studies
 early childhood period 9
 long-term effects 11
prenatal and early childhood period 7, 8
 prenatal period 6, 7, 14
 short-term effects 11
 prevalence in children 1, 2
 protein energy malnutrition vs micronutrient malnutrition 1, 14, 42
 sleep-wake cycle effects 41
 stunting 4, 5, 8, 9
 wasting 4, 5
Manganese
cell damage mechanisms 247, 248, 256
deficiency 257
Melanocortin
defects in obesity 113
 hypothalamic catabolic effector system 101, 102
 receptors 101, 102, 113
Menkes disease, copper metabolism
defects 250
Mental development
gene expression regulation by nutrients 43–46
iron deficiency anemia, cognitive effects in development
 animal models 20, 21
 controls in studies 36, 37
 mechanisms 20, 36
 myelination impairment 21, 24
 neurofunctional maturation patterns 20, 21
testing 20
ketogenic diet effects 320, 321
nutrients in brain development, see Docosahexaenoic acid, Folic acid, Iodine
protein oversupplementation effects in preterm infants 42, 43
sensory integration in functional development 64, 65
undernutrition impact in children
 adoption studies 9, 10
 assessment tools 17
 cognitive function mechanisms 3, 41
 intrauterine growth retardation 16
 low birth weight babies 6, 8, 16
 moderate undernutrition and timing effects 5, 6
Mental development (continued)
 school age children 10, 11
 severe undernourishment effects 3, 4
 small for gestational age babies 6, 8, 16, 17
 socio-economic factors 2, 15, 18
 supplementation studies
 early childhood period 9
 long-term effects 11
 prenatal and early childhood period 7, 8
 prenatal period 6, 7, 14
 short-term effects 11
 zinc effects 70
Mercaptoacetate, effects on appetite 83–85
Metallothionein, induction and ligands 260, 261
Neural tube defect, see Folic acid
Neuropeptide Y, hypothalamic anabolic effector system 100, 101
Noradrenaline
 albumin load test and monoamine precursor plasma amino acids 138, 139, 141
 appetite suppressant mechanisms 119, 121, 122
 depression studies
 inhibitor studies 137, 138
 tyrosine depletion effects 138
 dietary effects on brain levels
 protein ingestion 127, 128
 tyrosine concentrations in brain 127
 food selection role 143–145
 neurons in brain 118–121
 reuptake 119

Oleamide, see Cannabinoid receptors
Oxidative stress
 Alzheimer disease hypothesis
 brain damage 220
 free radical damage mechanisms 220–222
 brain susceptibility 248–250
 metal roles 247, 248, 250
 stroke hypothesis
 animal studies 240
 apoptosis 240
 gene expression 240, 241
 vitamin E protection 240
 Parathyroid hormone, concentration in uremic encephalopathy 292
 Paraventricular nucleus, appetite control 102
 Peroxisome proliferator-activated receptor, activation by fatty acids 53, 54
 Phytoestrogens, neuroprotection 270
 Prion disease, copper role 253, 254
 Protein energy malnutrition, see Malnutrition
 Pyridoxal phosphate
 anorexia nervosa status 160, 161
 deficiency in aging
 cognitive dysfunction studies 204–209
 homocysteine as marker 210, 214, 215, 271
 intervention 211
 mechanisms of deficiency 271
 prevalence 203
 neurological manifestations of deficiency 201, 202
 one-carbon metabolism and brain function 204, 210
 oral contraceptive metabolism and brain levels 14
 Rapid eye movement sleep, see Sleep-wake cycle
 Renal failure, see also Uremic encephalopathy
 dialysis therapy 290
 hemodynamic response to infused amino acids 291
 markers 290, 291
 nutritional therapy 293, 294
 Rhodopsin
 light activation 55, 56
 membrane composition effects 55, 56
 Selegiline, Alzheimer disease trials 222, 223
 Serotonin
 albumin load test and monoamine precursor plasma amino acids 138, 139, 141
 anorexia nervosa
 dietary tryptophan effects 158–160
 neuronal activity 156, 157, 167
nutritional factors in treatment 160, 161, 166
postsynaptic antagonist therapy 165, 166
receptor variants 168
refeeding effects 158
selective reuptake inhibitor therapy 159–161, 165
appetite suppressant mechanisms 119, 121, 122
bulimia nervosa
neuronal activity 156, 157
refeeding effects 158
tryptophan depletion effects 159
depression studies
bulimia nervosa and tryptophan depletion 137
dietary tryptophan effects on synthesis 136, 137
seasonal affective disorder and tryptophan depletion 137
dietary effects on brain levels
carbohydrate intake 125, 127, 128
protein intake 127
tryptophan concentrations in brain 123, 125
exercise effects 166
food selection role 143–145
light effects on brain levels 150
magnetic resonance imaging of transport 131, 132
neurons in brain 118–121
reuptake 119
synthesis 123
Sibutramine, mechanism of appetite suppression 119, 121, 122
Sleep-wake cycle
active sleep
central nervous system maturation role 62
features 61
suppression effects 61, 62
breast feeding vs bottle feeding effects in infants 63
ciracadian rhythm 30, 41, 60
development 60, 61
dopamine role 199
essential fatty acids in sleep modulation 64
food intake correlations
animal studies 190–194
food deprivation studies 191
human studies 195
meal size and sleep duration 190, 195
phases of sleep 192, 193
rapid eye movement sleep deprivation and carbohydrate-rich diet intake 190
growth hormone triggering 194
prediction of subsequent food intake 191
slow wave sleep adjustments 193, 194, 197, 198
thermoregulation 191, 192
tryptophan effects 198
malnutrition effects 41
stages of sleep 189
Slow wave sleep, see Sleep-wake cycle
Stroke
CARDIAC study
beneficial nutrients 236, 237, 239, 244
blood pressure measurement 236
fiber effects 245
salt excretion and stroke mortality 237, 239, 244, 245
serum cholesterol levels 237–239
urine sampling 234, 236
worldwide survey 234
Japanese trends 231, 232
nutritional prevention 241, 242
oxidative stress hypothesis
animal studies 240
apoptosis 240
gene expression 240, 241
vitamin E protection 240
prevention 264
rat models
blood-brain barrier changes 244
diet studies 234
genes in salt-induced blood pressure elevation 233, 234
overview 231, 232
salt restriction 233
salt sensitivity variability 246
vascular anatomy 232
Subject Index

Stroke (continued)
vascular smooth muscle cell
maintenance and degeneration 232, 233

Taurine, deficiency and central nervous
system development 42

Thyroid hormone
brain development
animal models 49, 50
cerebellar actions 50
ethanol effects 52
gene regulation 51
iodothyronine deiodinase activity
coordination 51
myelination mediation 52
neurofilament gene expression 50
receptors 49, 51, 52
role 48, 49
iodine deficiency and mental
retardation 48, 49, 70
metabolism of forms 51

Tryptamine, synthesis in brain 13

Tryptophan
aging effects on levels 151, 152
catabolism 132
depletion testing 149
depression studies
bulimia nervosa and tryptophan
depletion 137
dietary tryptophan effects on
serotonin synthesis 136, 137
seasonal affective disorder and
tryptophan depletion 137
dietary effects on brain levels and
serotonin synthesis 123, 125, 143–145
eating disorder levels 158–160
hepatic encephalopathy levels 287
sleep effects 198
transport in brain 150, 151

Tyrosine
catabolism 132
depletion in depression 18
dietary effects on brain levels and
catecholamine synthesis 127,
128, 143–145
oral contraceptive effects on levels
140, 141

Undernutrition, see Malnutrition

Uremic encephalopathy
clinical features 291, 292
nutritional therapy 293, 294
parathyroid hormone concentrations
transmembrane ion transport defects
urea accumulation 292

Vascular smooth muscle cell,
maintenance and degeneration in
stroke 232, 233

Visual evoked potentials
docosahexaenoic acid
supplementation effects 58
iron deficiency anemia effects 24, 25, 29

Vitamin B6, see Pyridoxal phosphate

Vitamin B12
deficiency in aging
cognitive dysfunction studies
homocysteine as marker 204–209
intervention 211
prevalence 203
neurological manifestations of
deficiency 201, 202
one-carbon metabolism and brain
function 204, 210
supplementation 214, 215

Vitamin E
Alzheimer disease trials 222, 223,
230, 266, 277, 279
stroke protection 240

Wilson disease, copper metabolism
defects 250, 251, 261

Zinc, toxicity 262