Subject Index

AFM, see Atomic force microscopy
Amino acid loss
 hemodiafiltration with polysulfone
 versus polyethersulfone membranes
 amino acid losses 62–64
 assays 61
 homocysteine levels, losses 63–65
 overview 59, 60
 plasma amino acid levels 61, 62
 statistical analysis 61
 study design 60, 61
 malnutrition in end-stage renal disease 59, 64
Atomic force microscopy (AFM),
 DIAPES® ultrastructural characterization 13, 14, 22, 24, 25

Biocompatibility
 DIAPES® LF100
 assays 70, 71
 C5a 72, 73, 76
 C-reactive protein 68, 73, 77
 elastase 73, 76
 mean platelet volume 69, 74, 77
 platelet count 73, 74
 platelet factor 4, 69, 75, 77
 sample collection 70
 study design 69, 70
 β-thromboglobulin 69, 75, 77
 white blood cell count 71, 72, 76
 DIAPES® low-flux, high-flux, and
 polysulfone membrane comparisons

 CD11b/18 expression 119, 122
 CD15 expression 119, 122
 CD62P expression 119, 122
 CD63 expression 119, 122
 data analysis 119
 study design 118, 119
 DIAPES® membrane paired
 hemodiafiltration versus high-flux
 hemodialysis
 C-reactive protein response 103
 interleukin-6 response 103, 104
 tumor necrosis factor alpha response 103, 104
 interleukin-6 production, DIAPES®
 comparison with hemophan
 membranes
 assays 82
 statistical analysis 83
 study design 81, 82
 time course, response 83–86
 property-biological response relationship 117
 Blood viscosity, measurement 140, 141

C5a, DIAPES® LF100 biocompatibility 72, 73, 76
CD11b/18, DIAPES® low-flux, high-flux,
 and polysulfone membrane comparisons
 of biocompatibility 119, 122
CD15, DIAPES® low-flux, high-flux, and
 polysulfone membrane comparisons of
 biocompatibility 119, 122
CD62P, DIAPES® low-flux, high-flux, and polysulfone membrane comparisons of biocompatibility 119, 122
CD63, DIAPES® low-flux, high-flux, and polysulfone membrane comparisons of biocompatibility 119, 122
Clotting, continuous hemofiltration fiber hemofilter length effects 137, 139, 142
 flow rate effects 137, 138
 risk factors 126, 127
tele-monitoring with DIAPES® membrane 127, 130, 132, 137, 141, 142
 wall shear rate effects 138, 139
Continuous renal replacement therapy (CRRT)
 clotting, continuous hemofiltration fiber hemofilter length effects 137, 139, 142
 flow rate effects 137, 138
 risk factors 126, 127
tele-monitoring with DIAPES® membrane 127, 130, 132, 137, 141, 142
 wall shear rate effects 138, 139
continuous venous-venous hemodiafiltration, BLS 809 performance
 advantages 151
 clearances 150, 151
 hydrodynamic resistance of blood compartment 146
 sieving coefficients 147–149
 study design 145, 146
 ultrafiltration coefficient 146, 147
continuous venous-venous hemofiltration, BLS 807 performance
 advantages 151
 hydrodynamic resistance of blood compartment 146
 sieving coefficients 147–149
 study design 145, 146
 ultrafiltration coefficient 146, 147
 ultrafiltration rates 149, 150
C-reactive protein (CRP)
 DIAPES® LF100 biocompatibility 68, 73, 77
 DIAPES® membrane paired hemodiafiltration versus high-flux hemodialysis response 103
 prognostic value, hemodialysis 81
CRP, see C-reactive protein
CRRT, see Continuous renal replacement therapy
DIAPES® biocompatibility, see Biocompatibility
BLS 807 features 144, 145
BLS 809 features 144, 145
continuous renal replacement therapy, see Continuous renal replacement therapy; Tele-monitoring, continuous hemofiltration with DIAPES® membranes
cytokine production 80–86
cytokine removal 38–42
distribution of blood and dialysate flows in hollow-fiber hemodialyzers
 advantages 35
 BLS 816 dialyzer 31–33
 BLS 819 dialyzer 31–33
 contrastographic analysis and calculations 28–30
 image subtraction analysis 33, 35
overview 27
handling of BLS 800 series membranes
 creatinine clearance effects 113, 114
 heparinization avoidance 110, 115
 β₂-microglobulin effects 111, 115
 phosphate clearance effects 112, 114
 rinsing procedures 110, 111, 115
 urea clearance effects 112, 113, 114
 visual score of effects 112, 115, 116
paired hemodiafiltration, see Paired hemodiafiltration
performance-enhancing technology 6
physical properties 9
ultrastructural characterization
 atomic force microscopy 13, 14, 22, 24, 25
cross-section 17–22
energy dispersive system X-ray microanalysis 22, 24, 25
inner surface 22, 24
DIAPES® (continued)
ultrastructural characterization (continued)
outer surface 15, 17
scanning electron microscopy 13–15, 17–22
stereomicroscopy 13–15

Elastase, DIAPES® LF100 biocompatibility 73, 76
Energy dispersive system X-ray microanalysis, DIAPES® ultrastructural characterization 22, 24, 25

FractioPES
medical applications 7
sieving coefficients 10, 11

Glucose, administration effects on coefficient of permeability and clearance with DIAPES® HF-800 membrane 89, 90, 92–97

Hemodiafiltration (HDF)
 amino acid losses with polysulfone versus polyethersulfone membranes amino acid losses 62–64 assays 61 homocysteine levels and losses 63–65 overview 59, 60 plasma amino acid levels 61, 62 study design 60, 61 continuous renal replacement therapy, see Continuous renal replacement therapy DIAPES® HF-800 high-flux on-line hemodiafiltration calculations 89, 90 dialysis indices 94 glucose administration effects on coefficient of permeability and clearance 89, 90, 92–97 hydraulic permeability 92, 93 oncotic pressures 94, 95 overview 88, 89 solute clearance 90, 92 study design 89

DIAPES® HF-800XP studies albumin loss 45, 47 blood cell count 46, 50 clearance evaluation 45, 47 design 44, 45 dialysis parameters 46 \(\beta \)-microglobulin, plasma 46, 47, 50 overview 44 residual blood volume 46, 52 paired hemodiafiltration, see Paired hemodiafiltration

Hemophan DIAPES® membrane comparison, interleukin-6 production assays 82 statistical analysis 83 study design 81, 82 time course of response 83–86 HF-800, see Hemodiafiltration; High-flux hemodialysis High-flux hemodialysis (HFD) DIAPES® HF-800XP studies albumin loss 45, 52, 53 blood cell count 46 clearance evaluation 45 design 44, 45 \(\beta \)-microglobulin, plasma 46, 54 overview 44 residual blood volume 46 DIAPES® membrane paired hemodiafiltration versus high-flux hemodialysis chronic experience 104 C-reactive protein response 103 efficiency 102, 103 interleukin-6 response 103, 104 pressure profiles 102 study design 101, 102 tumor necrosis factor alpha response 103, 104 Rapido BLS 819SD efficiency compared with standard hemodialysis study design 55, 56 urea clearance 56, 57 Hollow-fiber production 5, 6 Homocysteine, levels and losses in hemodiafiltration 63–65
Leukocyte, activation in dialysis 68

Malnutrition, see Amino acid loss
Mean platelet volume (MPV), DIAPES® LF100 biocompatibility 69, 74, 77
MicroPES latex bead test 9, 10
Subject Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethersulfone (continued)</td>
<td></td>
</tr>
<tr>
<td>production 4–6</td>
<td></td>
</tr>
<tr>
<td>water interactions 2, 3</td>
<td></td>
</tr>
<tr>
<td>Polysulfone</td>
<td></td>
</tr>
<tr>
<td>amino acid loss, see Amino acid loss</td>
<td></td>
</tr>
<tr>
<td>biocompatibility, see Biocompatibility</td>
<td></td>
</tr>
<tr>
<td>chemical structure 1, 2</td>
<td></td>
</tr>
<tr>
<td>cytokine removal 38–42</td>
<td></td>
</tr>
<tr>
<td>physical properties 8</td>
<td></td>
</tr>
<tr>
<td>water interactions 2, 3</td>
<td></td>
</tr>
<tr>
<td>Rinsing procedures, BLS 800 series</td>
<td></td>
</tr>
<tr>
<td>membranes 110, 111, 115, 116</td>
<td></td>
</tr>
<tr>
<td>Scanning electron microscopy (SEM), DIAPES® ultrastructural characterization 13–15, 17–22</td>
<td></td>
</tr>
<tr>
<td>Stereomicroscopy, DIAPES® ultrastructural characterization 13–15</td>
<td></td>
</tr>
<tr>
<td>Tele-monitoring, continuous hemofiltration with DIAPES® membranes</td>
<td></td>
</tr>
<tr>
<td>blood viscosity measurement 140, 141</td>
<td></td>
</tr>
<tr>
<td>clotting 127, 130, 132, 137, 141, 142</td>
<td></td>
</tr>
<tr>
<td>detected parameters 131–133</td>
<td></td>
</tr>
<tr>
<td>HF-800 versus polyamide membranes</td>
<td></td>
</tr>
<tr>
<td>127, 128, 130, 132, 133, 139, 140, 142</td>
<td></td>
</tr>
<tr>
<td>rationale 126, 127</td>
<td></td>
</tr>
<tr>
<td>slow hemofiltration 128</td>
<td></td>
</tr>
<tr>
<td>statistical evaluation 130</td>
<td></td>
</tr>
<tr>
<td>system 128, 130</td>
<td></td>
</tr>
<tr>
<td>ultrafiltration coefficient measurement 130</td>
<td></td>
</tr>
<tr>
<td>130, 136</td>
<td></td>
</tr>
<tr>
<td>β-Thromboglobulin, DIAPES® LF100</td>
<td></td>
</tr>
<tr>
<td>biocompatibility 69, 75, 77</td>
<td></td>
</tr>
<tr>
<td>Tumor necrosis factor alpha (TNF-α), DIAPES® membrane paired</td>
<td></td>
</tr>
<tr>
<td>hemodiafiltration versus high-flux hemodialysis response 103, 104</td>
<td></td>
</tr>
<tr>
<td>Urea clearance corrected for total recirculation, see Ionic dialysance</td>
<td></td>
</tr>
<tr>
<td>Wet-spinning process, principles 4, 5</td>
<td></td>
</tr>
<tr>
<td>White blood cell count, DIAPES® LF100</td>
<td></td>
</tr>
<tr>
<td>biocompatibility 71, 72, 76</td>
<td></td>
</tr>
</tbody>
</table>