AFM, see Atomic force microscopy
Amino acid loss
hemodiafiltration with polysulfone versus polyethersulfone membranes
amino acid losses 62–64
assays 61
homocysteine levels, losses 63–65
overview 59, 60
plasma amino acid levels 61, 62
statistical analysis 61
study design 60, 61
malnutrition in end-stage renal disease 59, 64
Atomic force microscopy (AFM), DIAPES® ultrastructural characterization 13, 14, 22, 24, 25
Biocompatibility
DIAPES® LF100
assays 70, 71
C5a 72, 73, 76
C-reactive protein 68, 73, 77
elastase 73, 76
mean platelet volume 69, 74, 77
platelet count 73, 74
platelet factor 4, 69, 75, 77
sample collection 70
study design 69, 70
β-thromboglobulin 69, 75, 77
white blood cell count 71, 72, 76
DIAPES® low-flux, high-flux, and polysulfone membrane comparisons
CD11b/18 expression 119, 122
CD15 expression 119, 122
CD62P expression 119, 122
CD63 expression 119, 122
data analysis 119
study design 118, 119
DIAPES® membrane paired hemodiafiltration versus high-flux hemodialysis
C-reactive protein response 103
interleukin-6 response 103, 104
tumor necrosis factor alpha response 103, 104
interleukin-6 production, DIAPES® comparison with hemophan membranes
assays 82
statistical analysis 83
study design 81, 82
time course, response 83–86
property-biological response relationship 117
Blood viscosity, measurement 140, 141
C5a, DIAPES® LF100 biocompatibility 72, 73, 76
CD11b/18, DIAPES® low-flux, high-flux, and polysulfone membrane comparisons of biocompatibility 119, 122
CD15, DIAPES® low-flux, high-flux, and polysulfone membrane comparisons of biocompatibility 119, 122
CD62P, DIAPES® low-flux, high-flux, and polysulfone membrane comparisons of biocompatibility 119, 122
CD63, DIAPES® low-flux, high-flux, and polysulfone membrane comparisons of biocompatibility 119, 122
Clotting, continuous hemofiltration fiber hemofilter length effects 137, 139, 142
flow rate effects 137, 138
risk factors 126, 127
tele-monitoring with DIAPES® membrane 127, 130, 132, 137, 141, 142
wall shear rate effects 138, 139
Continuous renal replacement therapy (CRRT)
clotting, continuous hemofiltration fiber hemofilter length effects 137, 139, 142
flow rate effects 137, 138
risk factors 126, 127
tele-monitoring with DIAPES® membrane 127, 130, 132, 137, 141, 142
wall shear rate effects 138, 139
continuous venous-venous hemodiafiltration, BLS 809 performance advantages 151
clearances 150, 151
hydrodynamic resistance of blood compartment 146
sieving coefficients 147–149
study design 145, 146
ultrafiltration coefficient 146, 147
continuous venous-venous hemofiltration, BLS 807 performance advantages 151
hydrodynamic resistance of blood compartment 146
sieving coefficients 147–149
study design 145, 146
ultrafiltration coefficient 146, 147
ultrafiltration rates 149, 150
C-reactive protein (CRP)
DIAPES® LF100 biocompatibility 68, 73, 77
DIAPES® membrane paired hemodiafiltration versus high-flux hemodialysis response 103
prognostic value, hemodialysis 81
CRP, see C-reactive protein
CRRT, see Continuous renal replacement therapy
DIAPES®, see Biocompatibility
BLS 807 features 144, 145
BLS 809 features 144, 145
continuous renal replacement therapy, see Continuous renal replacement therapy; Tele-monitoring, continuous hemofiltration with DIAPES® membranes
cytokine production 80–86
cytokine removal 38–42
distribution of blood and dialysate flows in hollow-fiber hemodialyzers advantages 35
BLS 816 dialyzer 31–33
BLS 819 dialyzer 31–33
contrastographic analysis and calculations 28–30
image subtraction analysis 33, 35
overview 27
handling of BLS 800 series membranes creatinine clearance effects 113, 114
heparinization avoidance 110, 115
β2-microglobulin effects 111, 115
phosphate clearance effects 112, 114
rinsing procedures 110, 111, 115
urea clearance effects 112, 113, 114
visual score of effects 112, 115, 116
paired hemodiafiltration, see Paired hemodiafiltration
performance-enhancing technology 6
physical properties 9
ultrastructural characterization
atomic force microscopy 13, 14, 22, 24, 25
cross-section 17–22
energy dispersive system X-ray microanalysis 22, 24, 25
inner surface 22, 24
DIAPES® (continued)
ultrastructural characterization (continued)
outer surface 15, 17
scanning electron microscopy 13–15, 17–22
stereomicroscopy 13–15

Elastase, DIAPES® LF100 biocompatibility
73, 76
Energy dispersive system X-ray microanalysis, DIAPES® ultrastructural characterization 22, 24, 25

FractioPES
medical applications 7
sieving coefficients 10, 11

Glucose, administration effects on coefficient of permeability and clearance with DIAPES® HF-800 membrane 89, 90, 92–97

Hemodiafiltration (HDF)
amino acid losses with polysulfone versus polyethersulfone membranes
amino acid losses 62–64
assays 61
homocysteine levels and losses 63–65
overview 59, 60
plasma amino acid levels 61, 62
study design 60, 61
continuous renal replacement therapy, see Continuous renal replacement therapy
DIAPES® HF-800 high-flux on-line hemodiafiltration
calculations 89, 90
dialysis indices 94
glucose administration effects on coefficient of permeability and clearance 89, 90, 92–97
hydraulic permeability 92, 93
oncotic pressures 94, 95
overview 88, 89
solute clearance 90, 92
study design 89

DIAPES® HF-800XP studies
albumin loss 45, 47
blood cell count 46, 50
clearance evaluation 45, 47
design 44, 45
dialysis parameters 46
β₂-microglobulin, plasma 46, 47, 50
overview 44
residual blood volume 46, 52
paired hemodiafiltration, see Paired hemodiafiltration

Hemophan
DIAPES® membrane comparison, interleukin-6 production
assays 82
statistical analysis 83
study design 81, 82
time course of response 83–86

HF-800, see Hemodiafiltration; High-flux hemodialysis

High-flux hemodialysis (HFD)
DIAPES® HF-800XP studies
albumin loss 45, 52, 53
blood cell count 46
clearance evaluation 45
design 44, 45
β₂-microglobulin, plasma 46, 54
overview 44
residual blood volume 46
DIAPES® membrane paired hemodiafiltration versus high-flux hemodialysis
chronic experience 104
C-reactive protein response 103
efficiency 102, 103
interleukin-6 response 103, 104
pressure profiles 102
study design 101, 102
tumor necrosis factor alpha response 103, 104
Rapido BLS 819SD efficiency compared with standard hemodialysis
study design 55, 56
urea clearance 56, 57

Hollow-fiber production 5, 6
Homocysteine, levels and losses in hemodiafiltration 63–65

Subject Index 156
Subject Index

<table>
<thead>
<tr>
<th>ID, see Ionic dialysance</th>
<th>IL-1β, see Interleukin-1β</th>
<th>IL-6, see Interleukin-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interleukin-1 receptor antagonist</td>
<td>DIAPIES® ultrafiltration removal</td>
<td>38–42</td>
</tr>
<tr>
<td></td>
<td>polysulfone ultrafiltration removal</td>
<td>38–42</td>
</tr>
<tr>
<td></td>
<td>septic patient treatment</td>
<td>38</td>
</tr>
<tr>
<td>Interleukin-1β (IL-1β)</td>
<td>DIAPIES® ultrafiltration removal</td>
<td>38–42</td>
</tr>
<tr>
<td></td>
<td>polysulfone ultrafiltration removal</td>
<td>38–42</td>
</tr>
<tr>
<td>Interleukin-6 (IL-6)</td>
<td>acute-phase response</td>
<td>80</td>
</tr>
<tr>
<td>DIAPIES® comparison with hemophan membranes in production assays</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td></td>
<td>statistical analysis</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>study design</td>
<td>81, 82</td>
</tr>
<tr>
<td></td>
<td>time course of response</td>
<td>83–86</td>
</tr>
<tr>
<td>DIAPIES® membrane paired</td>
<td>hemodiafiltration versus high-flux hemodialysis response</td>
<td>103, 104</td>
</tr>
<tr>
<td></td>
<td>DIAPIES® ultrafiltration removal</td>
<td>38–42</td>
</tr>
<tr>
<td></td>
<td>hemodialysis induction</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>polysulfone ultrafiltration removal</td>
<td>38–42</td>
</tr>
<tr>
<td></td>
<td>prognostic value, hemodialysis</td>
<td>81</td>
</tr>
<tr>
<td>Ionic dialysance (ID), urea clearance corrected for total recirculation correlation calculations</td>
<td>107–109</td>
<td></td>
</tr>
<tr>
<td>Direct Dialysis Quantification method</td>
<td>106, 108</td>
<td></td>
</tr>
<tr>
<td></td>
<td>overview</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>study design</td>
<td>106, 107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leukocyte, activation in dialysis</th>
<th>68</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malnutrition, see Amino acid loss</td>
<td>Mean platelet volume (MPV), DIAPIES® LF100 biocompatibility</td>
</tr>
<tr>
<td></td>
<td>MicroPES</td>
</tr>
<tr>
<td></td>
<td>medical applications</td>
</tr>
<tr>
<td></td>
<td>pore size distribution</td>
</tr>
<tr>
<td></td>
<td>MPV, see Mean platelet volume</td>
</tr>
<tr>
<td></td>
<td>Paired hemodiafiltration (PHF) development</td>
</tr>
<tr>
<td></td>
<td>DIAPIES® membrane paired hemodiafiltration versus high-flux hemodialysis chronic experience</td>
</tr>
<tr>
<td></td>
<td>C-reactive protein response</td>
</tr>
<tr>
<td></td>
<td>efficiency</td>
</tr>
<tr>
<td></td>
<td>interleukin-6 response</td>
</tr>
<tr>
<td></td>
<td>pressure profiles</td>
</tr>
<tr>
<td></td>
<td>study design</td>
</tr>
<tr>
<td></td>
<td>tumor necrosis factor alpha response</td>
</tr>
<tr>
<td></td>
<td>principles</td>
</tr>
<tr>
<td>Performance-enhancing technology (PET), rationale</td>
<td>6</td>
</tr>
<tr>
<td>PF4, see Platelet factor</td>
<td>4</td>
</tr>
<tr>
<td>PHF, see Paired hemodiafiltration Platelet activation, DIAPIES® low-flux, high-flux, and polysulfone membrane comparisons</td>
<td>118, 119, 122, 123</td>
</tr>
<tr>
<td>Platelet count, DIAPIES® LF100 biocompatibility</td>
<td>73, 74</td>
</tr>
<tr>
<td>Platelet factor 4 (PF4), DIAPIES® LF100 biocompatibility</td>
<td>69, 75, 77</td>
</tr>
<tr>
<td>Polyamide membranes, continuous hemofiltration performance comparison with HF-800</td>
<td>127, 128, 130, 132, 133, 139, 140, 142</td>
</tr>
<tr>
<td>Polyethersulfone amino acid loss, see Amino acid loss biocompatibility, see Biocompatibility, DIAPIES® LF100 chemical resistance</td>
<td>3, 4</td>
</tr>
<tr>
<td></td>
<td>chemical structure</td>
</tr>
<tr>
<td></td>
<td>DIAPIES®, see DIAPIES® FractioPES, see FractioPES hemodiafiltration, see Hemodiafiltration high-flux hemodialysis, see High-flux hemodialysis medical applications</td>
</tr>
<tr>
<td></td>
<td>MicroPES, see MicroPES physical properties</td>
</tr>
</tbody>
</table>
Polyethersulfone (continued)
production 4–6
carbon interactions 2, 3

Polysulfone
amino acid loss, see Amino acid loss
biocompatibility, see Biocompatibility
chemical structure 1, 2
cytokine removal 38–42
physical properties 8
water interactions 2, 3

Rinsing procedures, BLS 800 series
membranes 110, 111, 115, 116

Scanning electron microscopy (SEM),
DIAPES® ultrastructural characterization
13–15, 17–22
Steremicroscopy, DIAPES® ultrastructural
characterization 13–15

Tele-monitoring, continuous hemofiltration
with DIAPES® membranes
blood viscosity measurement 140, 141

clotting 127, 130, 132, 137, 141, 142
detected parameters 131–133
HF-800 versus polyamide membranes
127, 128, 130, 132, 133, 139, 140, 142
rationale 126, 127
slow hemofiltration 128
statistical evaluation 130
system 128, 130
ultrafiltration coefficient measurement
130, 136
β-Thromboglobulin, DIAPES®, LF100
biocompatibility 69, 75, 77
Tumor necrosis factor alpha (TNF-α),
DIAPES® membrane paired
hemodiafiltration versus high-flux
hemodialysis response 103, 104

Urea clearance corrected for total
recirculation, see Ionic dialysance

Wet-spinning process, principles 4, 5
White blood cell count, DIAPES® LF100
biocompatibility 71, 72, 76