Subject Index

Acromegaly
ectopic tumors 208, 209
glucose intolerance 208
growth hormone assays, see Growth hormone
insulin-like growth factor-I and binding protein assays, see Insulin-like growth factors
pathophysiology 200, 202
pituitary imaging 208
prolactin tests 207, 208

Active renin (ARE), mineralocorticoid function assessment 376

Adrenal gland
adrenocortical tumors, gas chromatography-mass spectrometry of urinary steroids 442
adrenocorticotropin stimulation tests
infusion tests 389, 390
long tests using depot transcortin 390
low-dose short test
 diagnostic value 389
evaluation 389
 purpose 387, 389
technique 389
short test
 diagnostic value 386, 387
evaluation 384, 385
technique 383, 384
androgen assays and metabolism 380, 381

autoantibody detection 383
cortex basal function tests
 cortisol precursors and metabolites
 372–375
 progestins 375, 377, 378
dexamethasone suppression testing
 overnight high-dose test 399
 overnight test 397, 398
 perfusion test 398
 purpose 396, 397
 standard 6-day low-dose, high-dose test 398, 399
imaging
 angiography 405
 computed tomography 403, 404
 intravenous urography 402
 magnetic resonance imaging 404
 plain radiographs 402
ultrasound
 diagnostic value 64
 differential diagnosis 403
 normal findings 64
 technical requirements 63, 64
insufficiency
cortical insufficiency causes 406, 407, 409
gas chromatography-mass spectrometry of urinary steroids
 432, 433, 442
insulin tolerance test 392, 393
lysine 8 vasopressin test 393, 394
Adrenal gland (continued)
medullary function testing
basal state 399–402
dynamic testing 402
metapyrone test 394–396
mineralocorticoid function assessment 376, 380
obesity changes 501, 502
prenatal diagnosis, fetal adrenal insufficiency 405, 406
scintigraphy
cortex
indications 87
interpretation 88
patient preparation 87
radiopharmaceuticals 87
side effects 88
technique 88
medulla
indications 82–84
interpretation 85, 86
m-iodobenzylguanidine as tracer 78, 79, 81, 404, 405
m-iodobenzylguanidine uptake 81, 82
neuroblastoma 79, 80
patient preparation 84
pheochromocytoma 80, 81
side effects 86
technique 85
tracer alternatives to m-iodobenzylguanidine 86, 87
sodium balance studies 380
steroid excess diagnosis
ambiguous genitalia 416, 417
Cushing’s syndrome 408
differential diagnosis 407, 408
hyperaldosteronism 408, 410, 411
hyperandrogenemia 411–416
venous sampling 405
Adrenocorticotropic hormone (ACTH)
anorexia nervosa levels 491
assay 382
corticotropic-releasing hormone stimulation test, see Corticotropin-releasing hormone lysine 8 vasopressin test 393, 394
metapyrone test 394–396
pheochromocytoma, see Pheochromocytoma stimulation tests
infusion tests 389, 390
long tests using depot tetracosactrin 390
low-dose short test
diagnostic value 389
evaluation 389
purpose 387, 389
technique 389
preterm infants 455, 456
short test
diagnostic value 386, 387
evaluation 384, 385
technique 383, 384
Adrenoleukodystrophy (ALD)
gene mutations 382
very-long-chain fatty acid assay in diagnosis 382
Aldosterone
assays
metabolites 226
overview 376
precursors 226, 229
hyperaldosteronism diagnosis 408, 410, 411
metabolism 376
normal levels of hormone, precursors, and metabolites
plasma 226–228
urine 226–228
sodium loss disorders
aldosterone and cortisol synthesis defects 229, 231
pseudohypoaldosteronism type I 232
transient pseudohypoaldosteronism type I 232, 233
sodium regulation 224
sodium retention disorders
glucocorticoid-suppressible aldosteronism 234, 235
pseudohypoaldosteronism type II 237
synthesis 428
Alkaline phosphatase, bone formation markers 462, 464
Ambiguous genitalia
causes 416
diagnosis 416, 417
diagnostic flow chart 526
gas chromatography-mass spectrometry
of urinary steroids 432, 433
Androgens
adrenal assays and metabolism 380, 381
biosynthetic genes and mutations 351
normal male values in childhood and
puberty 344
obesity changes 499–501
ovarian endocrine function assessment
365
receptor structure and mutations 350, 351
regulation of release in females 360
synthesis 428
testicular function assessment
androgen-binding studies in vitro 350
basal plasma androgen determinations
assays 343, 344
infants 343, 344
puberty 345, 346
human chorionic gonadotropin
stimulation testing 347
urinary steroid metabolite assays 348
Androstenedione, assays and metabolism
381
Anorexia nervosa (AN)
amenorrhea 488, 489
diagnosis 488
gonadotropin response 487–490
growth hormone system perturbation
493, 494
hypogonadism pathophysiology
487–490
hypothalamic-pituitary-adrenal axis
perturbations 491, 492
prolactin levels 495
skeletal changes 494, 495
thyroid function perturbation 492, 493
Anovulation, assessment 369
Anti-Müllerian hormone (AMH), testicular
function assessment 349
Arginine infusion test
diagnostic value 330
interpretation 330
intravenous glucose tolerance test 330
purpose 319, 329
technique 329, 330
tolbutamide test 331
Arginine tolerance test (ATT), growth
hormone stimulation testing
acromegaly 204
arginine with growth hormone-releasing
hormone stimulation test 123
arginine with insulin tolerance test 120
principles 118, 119
Arginine vasopressin (AVP)
assays 216
disorders, see Diabetes insipidus;
Syndrome of inappropriate secretion
of antidiuretic hormone
osmoregulatory system 212
regulation of release
osmoreceptors 213
thirst 214
volume 213, 214
renal effects 214, 215
synthesis 212, 213
Bartter-like syndromes, features 233
Beta cell
blood supply 261
electrical coupling of glucose and insulin
release
ATP-sensitive potassium channels
262, 264, 265, 267–272
calcium signaling 263, 264
phases of release 262, 264
gene defects and disease 266
hyperinsulinism in infancy, features 276,
277
innervation 261
Beta cell function assessment
arginine infusion test
diagnostic value 330
interpretation 330
intravenous glucose tolerance test 330
purpose 319, 329
technique 329, 330
tolbutamide test 331
diagnostic flow chart for hyperglycemia
523
Beta cell function assessment (continued)
glucagon test
 diagnostic value 329
 interpretation 329
 purpose 319, 328
 technique 328, 329
insulin and C-peptide fasting
 concentrations 320, 321
insulin sensitivity tests
 frequent-sampling intravenous glucose tolerance test 334
 hyperinsulinemic clamp studies 333, 334
 indices 334–336
intravenous glucose tolerance test
 arginine infusion 330
 diabetes criteria 324, 325
 diagnostic value 327, 328
 interpretation 326
 phases of insulin secretion 326, 327
 purpose 319
 technique 325
oral glucose tolerance test
 diabetes criteria 321–323
 diagnostic value 323, 324
 interpretation 323
 purpose 319
 technique 322
Sustacal/‘Boost’ test
 diagnostic value 333
 interpretation 333
 purpose 319, 332
 technique 332, 333
tolbutamide challenge test
 arginine infusion 331
 diagnostic value 332
 interpretation 331, 332
 purpose 319, 330, 331
 technique 331

Calcitonin assays 99
Calcium
differential diagnosis
 hypercalcemia 256
 hypocalcemia 255
 serum serum assay 245
Clomiphene, stimulation testing in delayed puberty 349
Clonidine, growth hormone stimulation testing 120, 121
Computed tomography (CT)
 adrenal gland 403, 404
bone densitometry with quantitative computed tomography 476
Congenital adrenal hyperplasia (CAH) gas chromatography-mass spectrometry of urinary steroids 432, 433 hypertensive forms 234 Corticotropin-releasing hormone (CRH) anorexia nervosa levels 492 stimulation test diagnostic value 391, 392 evaluation 391 preterm infants 456 purpose 391 standardization 392 technique 391
Cortisol adrenocorticotropin stimulation tests, see Adrenocorticotropin anorexia nervosa levels 491 cortisol conversion 373 diagnostic flow chart for hypercortisolism 528 metabolities and assays 373–375 preterm infant assessment 455 pulsatile secretion 372, 373 synthesis 428 synthesis defects and sodium loss 229, 231 testicular function assessment 347, 348
Cryptorchidism, diagnostic flow chart 525
Cushing’s syndrome
diagnosis 408
gas chromatography-mass spectrometry of urinary steroids 442

Dehydroepiandrosterone (DHEA)
assays and metabolism 380, 381 synthesis 428
Delayed puberty
clophephene stimulation testing in males 349

diagnostic flow chart 524
female assessment 367, 368

Denaturing gradient gel electrophoresis (DGGE), principles 40

Denaturing high-performance liquid chromatography, heteroduplex detection 40, 41
Dexamethasone suppression test overnight high-dose test 399 overnight test 397, 398 perfusion test 398 purpose 396, 397 standard 6-day low-dose, high-dose test 398, 399
Diabetes insipidus
definition 215
diagnosis arginine vasopressin assay 216 dehydration test 216–219 flow chart for polyuria 519 osmolality of plasma and urine 216 short desmopressin test 219, 220 urine volume 215 genetic testing 221 infants and young children 221 tumor imaging 220, 221
Diabetes mellitus, see also Beta cell function assessment types 325
Diazoxide, hyperinsulinism in infancy management 280, 281
Dihydrotestosterone, see Androgens
DNA extraction from blood 42–44
DNA cloning positional cloning 33 strategies 31–33
DNA sequencing automation 41, 42 polymerase chain reaction products 39, 40 Sanger method 41
L-Dopa, growth hormone stimulation testing 121
Dopamine
as assays 399, 400
growth hormone stimulation testing 204, 205 neuroblastoma diagnosis 401, 402 normal values by age 400, 401
Energy expenditure, types, 482, 483
Epinephrine
- assays, 399, 400
- neuroblastoma diagnosis, 401, 402
- normal values by age, 400, 401
Estrogens
- ovarian endocrine function assessment, 364
- regulation of release in females, 358, 359
- synthesis, 428
Exercise testing, growth hormone stimulation testing, 116–118
False-positive rate, hormone assays, 27
Follicle-stimulating hormone (FSH)
- levels in normal girls, 362
- normal male values in childhood and puberty, 344
- ovarian endocrine function assessment, 361–363
- regulation of release in females, 357
- testicular function assessment, 348, 349
Gas chromatography-mass spectrometry (GC-MS)
- advantages in steroid profiling, 427, 428
- plasma steroid profiling using isotope dilution
 - advantages, 443
 - prospects, 446
- steroid levels and clinical utility, 445
- urinary steroid profiling
- adrenal insufficiency, 432, 433, 442
- adrenocortical tumors, 442
- advantages, 446
- ambiguous genitalia, 432, 433
- congenital adrenal hyperplasia, 432, 433
- Cushing’s syndrome, 442
- enzyme defects and indications, 432, 433
- normal values by age, 434–440
- polycystic ovary syndrome, 442
- precocious puberty, 432, 433
- sample preparation, 429–432
- treatment monitoring, 21-hydroxylase deficiency, 441
- virilization, 432, 433

Genetic testing, see Molecular genetic testing
Ghrelin
- body mass regulation, 482
- growth hormone stimulation testing, 124
Glucagon
- beta cell function assessment
 - diagnostic value, 329
 - interpretation, 329
 - purpose, 319, 328
 - technique, 328, 329
- growth hormone stimulation testing, 121
- hyperinsulinism in infancy management, 282
- provocation test for hypoglycemia, 308
Glucokinase, hyperinsulinism in infancy mutations, 284
Gluconeogenesis, evaluation with tolerance tests, 309, 310
Glucose tolerance tests, see Intravenous glucose tolerance test; Oral glucose tolerance test
Glutamate dehydrogenase, hyperinsulinism in infancy mutations, 284
Gonadotropin-releasing hormone (GnRH),
- growth hormone stimulation testing, 205
- regulation of release in females, 357
- stimulation testing in females, 362, 363
- testicular function assessment, 349
Growth hormone (GH)
- adrenal function, 501, 502
- age-related changes in secretion, 150, 151, 456, 457
- anorexia nervosa perturbation, 493, 494
- assays
 - basal levels, 202, 203
 - immunofunctional assay, 113
 - normalization of data, 110, 111
 - radioimmunoassay, 112, 138, 139
 - radioreceptor assay, 113
 - standardization, 108, 113
- bone density changes, 504
- disorders, see Acromegaly; Growth hormone deficiency
- ectopic tumor, secretion, 208, 209
- half-life estimation, 132
- insulin-like growth factor system
interactions 168, 169, 180, 181
therapy monitoring 189–192
insulin resistance 502–504
obesity perturbations
 binding protein changes 498, 499
 metabolic and nutritional factors
 influencing secretion 497, 498
 overview 496
 spontaneous secretion 496, 497
 stimulated secretion 497
pituitary adenoma imaging 208
preterm infant evaluation 457
pulsatile secretion and biological effects 129–131
regulation of secretion 113, 114, 129, 130, 168, 169, 201, 202, 496
secretion versus sensitivity 151
spontaneous secretion analysis
acromegaly 203
deconvolution techniques 136, 137
distribution techniques 136
findings
day versus night values 144, 145
healthy adults 149
healthy children of normal or short stature 141–143
plasma concentrations over 24 h 146–148
integrated versus discrete sampling 132–134
overview 109, 110
pulsatility versus secretion rate 131, 132
pulse detection 135, 136
reproducibility of assays 139, 140
sampling interval 132
sampling period 134, 135
time series analysis 135
stimulation testing
 arginine-growth hormone-releasing hormone test 123
arginine-insulin tolerance test 120
arginine tolerance test 118, 119, 204
clonidine test 120, 121
L-dopa test 121
dopamine test 204, 205
exercise test 116–118
ghrelin test 124
glucagon test 121
growth hormone-releasing hormone test 122, 123, 204
growth hormone-releasing peptide test 124
insulin tolerance test 119, 120, 204
normality of response 124
overview 114–116
preparation for testing 116
pyridostigmine-growth hormone-releasing hormone test 123
sex steroid priming 121, 122
thyrotropin-releasing hormone 205
suppression testing
oral glucose tolerance test 205, 209
somatostatin test 206
thyroid function 504
urine assays
acromegaly 203, 204
advantages 163
circulating hormone correlations 161, 163
intraday variation 162
limitations 161, 162
monitoring of growth hormone therapy 163
normal values 161
overview 110, 160
puberty effects 162, 163
renal metabolism 160
reporting of results 162
Growth hormone deficiency (GHD)
 biochemical findings 108, 109
diagnosis
 criteria 107, 108
 flow chart 517
 pathophysiology 107
response to growth hormone therapy 151, 152
Growth hormone-releasing hormone (GHRH), growth hormone stimulation testing
acromegaly 204
arginine-growth hormone-releasing hormone test 123
principles 122, 123
Growth hormone-releasing hormone (GHRH), growth hormone stimulation testing (continued)
pyridostigmine growth hormone-releasing hormone test 123
Growth hormone-releasing peptides (GRPs), growth hormone stimulation testing 124

Hirsutism, see Virilization
Homovanillic acid (HVA)
neuroblastoma diagnosis 401, 402
normal values by age 400
Hormone assays, see also specific hormones
bioassays 2
diagnostic error 27, 28
good medical practice 1
immunoassays
agglutination assay 13, 14
antibody production 3, 4
antigen production 4
applications 15
calibration curve fitting 12, 13
competitive versus noncompetitive 5–7
enzyme immunoassay 8, 9
labeling of assay components and detection systems 7–10
microarray chip technology 14, 15
nephelometry 14
principles 5
radioimmunoassay 7
separation techniques for heterogenous assays 9, 11
surface plasmon resonance 14
technical trends 14
in situ assays 3
interpretation 26, 27
performance and quality management
clinical validation 23, 24
preanalytical phase 16
quality assurance 20, 21, 23
reference interval determination prerequisites 24
statistical analysis 25
technical validation 17–20
radioreceptor assays 2, 3

Human chorionic gonadotropin (hCG)
gonadal development, role 357
stimulation testing in testicular function assessment
androgen responses 347
protocols 346
sex hormone-binding globulin responses 347
L-3-Hydroxyacyl-CoA dehydrogenase, hyperinsulinism in infancy mutations 284, 285
Hypercalcemia
diagnostic flow chart 521
differential diagnosis 256
Hyperglycemia, see Beta cell function assessment
Hyperinsulinemic clamp studies, beta cell function assessment 333, 334
Hyperinsulinism in infancy (HI)
acute insulin response testing 277, 278
animal models 278, 279
ATP-sensitive potassium channel gene mutations 271–276
structure and regulation 265, 267–271
beta cell features 276, 277
clinical features 260
glucokinase mutations 284
glutamate dehydrogenase mutations 284
L-3-Hydroxyacyl-CoA dehydrogenase mutations 284, 285
incidence 261
prospects for study 285
sequelae 259, 260
treatment
diazoxide and analogs 280, 281
glucagon 282
nifedipine 281, 282
somatostatin 283
Hyperthyroidism
diagnostic flow chart 516
Graves’ disease 104
hormone assays in diagnosis 104, 105
Hypocalcemia
diagnostic flow chart 521
differential diagnosis 255
Hypoglycemia, see also Hyperinsulinism in infancy
Insulin-like growth factors (IGFs)
anorexia nervosa perturbation 493, 494
assays
 binding protein interference 171, 172
 formats 171
 IGF-I 173, 174
 IGF-II 174
normal ranges 175–179
SDS computation 178–179
separation from binding proteins
 acid-ethanol extraction 172, 173
 functional separation 173
size exclusion chromatography 172
stability 174, 175
binding proteins
 assay of IGFBP-3 174
 binding affinities 167, 172
 functions 169, 170
 IGFBP-3 level correlation with IGF
 levels 170, 171
 IGFBP-3 normal values 175, 178
 regulation 170
 related proteins 167, 168
 stability 174, 175
 synthesis 168
 types 167
developmental expression 457
factors affecting serum levels of growth
 factors and binding proteins
 circadian rhythm 180
 growth hormone 180, 181
 illness 182
 insulin 181
 kidney function 182, 183
 liver function 182
 nutrition 182
 overview 179, 180
 post-agression syndrome 182
 sex steroids 181
 thyroid hormone 181
growth hormone
 deficiency evaluation 110, 111, 166, 183–189
 excess evaluation 189, 206, 207
 interactions 168, 169, 180, 181
 therapy monitoring 189–192
obesity changes 498
preterm infant evaluation 457
receptors 169
regulation of secretion 166, 168
structures 166, 167
synthesis 168
Intrauterine growth retardation (IUGR),
 endocrine consequences 483, 486
Intravenous glucose tolerance test (IGTT)
 arginine infusion 330
 diabetes criteria 324, 325
 diagnostic values 327, 328
 frequent-sampling intravenous glucose
 tolerance test 334
 interpretation 326
 phases of insulin secretion 326, 327
 purpose 319
 technique 325
Iodine
 radioisotope scintigraphy 100
 thyroid requirements 68, 69
 urine assays 99, 100
Kallmann’s syndrome, gene mutations 352
Leptin
 body mass regulation 481, 482
 hypothalamic-pituitary-adrenal axis
 interactions 491, 492
 puberty, role 488
Liddle’s syndrome, features 236, 237
Linkage analysis, principles 33, 34, 36
Luteinizing hormone (LH)
 anorexia nervosa levels 487–490
 levels in normal girls 362
 normal male values in childhood and
 puberty 344
 ovarian endocrine function assessment
 361–363
 precocious puberty and activating
 mutations in receptor 352
 regulation of release in females 357
 testicular function assessment 348,
 349
Luteinizing hormone-releasing hormone,
 see Gonadotropin-releasing hormone
Lysine 8 vasopressin test
 diagnostic value 394
Magnetic resonance imaging (MRI), adrenal gland 404
Metapyrone test
diagnostic value 396
evaluation 395, 396
preterm infants 456
purpose 394, 395
technique 395
Microsatellite, analysis in genetic disorders 35, 36
Mineralocorticoids, see also Aldosterone;
Sodium
assays 376
deficiency assessment
active renin 376
plasma renin activity 376
syndrome of apparent mineralocorticoid excess 235, 236
Molecular genetic testing, see also specific techniques
gene defects and diseases 45
inborn errors of metabolism 313, 314
indications 44, 49
overview 30
terminology 46–48
Negative predictive value (NPV), hormone assays 27
Neuroblastoma
catecholamine levels in diagnosis 401, 402
dopamine levels in diagnosis 401, 402
homovanillic acid in diagnosis 401, 402
scintigraphy 79, 80
vanillylmandelic acid in diagnosis 401, 402
Nifedipine, hyperinsulinism in infancy
management 281, 282
Norepinephrine
assays 399, 400
neuroblastoma diagnosis 401, 402
normal values by age 400, 401
Obesity
diagnostic flow chart 519
epidemiology 495
etiology in children 495, 496
growth hormone system perturbations
binding protein changes 498, 499
insulin-like growth factor changes 498
metabolic and nutritional factors
influencing secretion 497, 498
overview 496
spontaneous secretion 496, 497
stimulated secretion 497
leptin system mutations 481, 482
polycystic ovary syndrome 499, 500
sex hormone perturbation 499–501
Oral glucose tolerance test (OGTT)
beta cell function assessment
diabetes criteria 321–323
diagnostic value 323, 324
interpretation 323
purpose 319
technique 322
growth hormone supression testing 205, 209
Osteocalcin, bone formation marker 462, 464
Ovaries
assessment of endocrine function
androgens 365
anovulation 369
blood sampling for assays 366, 367
clinical assessment 361
delayed puberty 367, 368
estrogens 364
follicle-stimulating hormone 361–363
gonadotropin-releasing hormone stimulation test 362, 363
hypothalamo-pituitary-gonadal axis testing 363, 364
inhibins 364
luteinizing hormone 361–363
ovarian failure 367, 368
precocious puberty 367
progesterone 364
prolactin 362
sex-hormone-binding globulin 365, 366
virilization 368, 369
Ovaries (continued)
hypothalamo-pituitary-gonadal axis
fetal and prepubertal development 357
regulation of release
activins 359
androgens 360
estrogens 358, 359
follicle-stimulating hormone 357
gonadotropin-releasing hormone 357
inhibins 359
luteinizing hormone 357
progesterone 359
prolactin 357, 358
sex-hormone-binding globulin 360
ultrasound
diagnostic values 61
normal findings 60, 61
technical requirements 58, 60
transvaginal sonography 61

Parathyroid hormone (PTH)
calcium regulation 245
evaluation
calcium levels in serum 245
cyclic AMP levels in urine and plasma
basal urinary excretion 250
parathyroid hormone stimulation
test 250, 252
rationale 249, 250
phosphate levels in serum 245
renal phosphate reabsorption 246
serum assays
formats 246, 247
immunoradiometric assay 248
intact hormone 247–249
two-site chemiluminescent assay 249
regulation of secretion 245
synthesis 244, 245
Parathyroid hormone-related protein
(PTHrP)
assays 253
fetal development, role 252
lactation, role 252, 253
splice variants 253

Parathyroid scintigraphy
indications 77
radiopharmaceuticals 77
side effects 78
technique 78
Phenylpropionate loading, hypoglycemia
diagnosis 308
Pheochromocytoma
markers 400, 401
scintigraphy 80, 81
syndromes 401
venous sampling 405
Plasma renin activity (PRA)
determination 225, 226
mineralocorticoid function assessment
376
Polycystic ovary syndrome (PCOS)
gas chromatography-mass spectrometry
of urinary steroids 442
obesity 499, 500
Polymerase chain reaction (PCR)
gel electrophoresis of products 38, 39
primers 37
principles 35–37
sample preparation 42–44
sequencing of products 38, 39
thermal cycling 37, 38
Positive predictive value (PPV), hormone
assays 27
Potassium channel, ATP-dependent
hyperinsulinism in infancy
gene mutations 271–276
knockout mouse models 278, 279
insulin release regulation 262, 264
structure and regulation 265, 267–271
Precocious puberty
diagnostic flow chart for girls 527
female assessment 367
gas chromatography-mass spectrometry
of urinary steroids 432, 433
male 352
Premature infants
adrenal steroids
adrenocorticotropic stimulation testing
455, 456
corticotropin-releasing hormone
stimulation test 456
Subject Index
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRY gene, mutations in gonadal agenesis</td>
<td>352</td>
</tr>
<tr>
<td>Testosterone, see Androgens</td>
<td></td>
</tr>
<tr>
<td>Thyroglobulin, assays</td>
<td>98</td>
</tr>
<tr>
<td>Thyroid gland, see also Hyperthyroidism; Hypothyroidism</td>
<td></td>
</tr>
<tr>
<td>anorexia nervosa perturbation</td>
<td>492, 493</td>
</tr>
<tr>
<td>autoantibody assays</td>
<td>98, 99</td>
</tr>
<tr>
<td>development</td>
<td>67, 68, 93–95</td>
</tr>
<tr>
<td>iodine radioisotope studies</td>
<td>100</td>
</tr>
<tr>
<td>iodine requirements</td>
<td>68, 69</td>
</tr>
<tr>
<td>obesity changes</td>
<td>504</td>
</tr>
<tr>
<td>scintigraphy</td>
<td></td>
</tr>
<tr>
<td>indications</td>
<td>71–73</td>
</tr>
<tr>
<td>interference factors</td>
<td>76, 77</td>
</tr>
<tr>
<td>interpretation</td>
<td>75, 76</td>
</tr>
<tr>
<td>patient preparation</td>
<td>73, 74</td>
</tr>
<tr>
<td>radiopharmaceuticals</td>
<td>69–70, 100</td>
</tr>
<tr>
<td>side effects</td>
<td>77</td>
</tr>
<tr>
<td>technique</td>
<td>74–75</td>
</tr>
<tr>
<td>Ultrasound</td>
<td></td>
</tr>
<tr>
<td>adrenal gland</td>
<td></td>
</tr>
<tr>
<td>diagnostic value</td>
<td>64</td>
</tr>
<tr>
<td>differential diagnosis, adenomas/carcinomas</td>
<td>403</td>
</tr>
<tr>
<td>normal findings</td>
<td>64</td>
</tr>
<tr>
<td>technical requirements</td>
<td>63, 64</td>
</tr>
<tr>
<td>bone densitometry</td>
<td>476</td>
</tr>
<tr>
<td>ovaries</td>
<td></td>
</tr>
<tr>
<td>diagnostic value</td>
<td>61</td>
</tr>
<tr>
<td>normal findings</td>
<td>60, 61</td>
</tr>
<tr>
<td>technical requirements</td>
<td>58, 60</td>
</tr>
<tr>
<td>transvaginal sonography</td>
<td>61</td>
</tr>
<tr>
<td>reliability in organ size determination</td>
<td>51, 52</td>
</tr>
<tr>
<td>testicular function assessment</td>
<td>350</td>
</tr>
<tr>
<td>thyroid gland</td>
<td></td>
</tr>
<tr>
<td>diagnostic value</td>
<td>54</td>
</tr>
<tr>
<td>growth evaluation</td>
<td>97</td>
</tr>
<tr>
<td>infants</td>
<td>54, 56</td>
</tr>
<tr>
<td>normal findings</td>
<td>53, 54</td>
</tr>
<tr>
<td>technical requirements</td>
<td>52</td>
</tr>
<tr>
<td>uterus</td>
<td></td>
</tr>
<tr>
<td>diagnostic value</td>
<td>57, 58</td>
</tr>
<tr>
<td>normal findings</td>
<td>56, 57</td>
</tr>
<tr>
<td>technical requirements</td>
<td>56</td>
</tr>
<tr>
<td>transvaginal sonography</td>
<td>58</td>
</tr>
<tr>
<td>Vanillylmandelic acid (VMA)</td>
<td></td>
</tr>
<tr>
<td>neuroblastoma diagnosis</td>
<td>401, 402</td>
</tr>
<tr>
<td>normal values by age</td>
<td>400</td>
</tr>
<tr>
<td>Vasopressin, see Arginine vasopressin; Lysine 8 vasopressin test</td>
<td></td>
</tr>
<tr>
<td>Virilization</td>
<td></td>
</tr>
<tr>
<td>assessment</td>
<td>368, 369</td>
</tr>
<tr>
<td>diagnostic flow chart for hirsutism</td>
<td>529</td>
</tr>
<tr>
<td>gas chromatography-mass spectrometry of urinary steroids</td>
<td>432, 433</td>
</tr>
<tr>
<td>Vitamin D</td>
<td></td>
</tr>
<tr>
<td>assays</td>
<td></td>
</tr>
<tr>
<td>1,25-dihydroxyvitamin D</td>
<td>242–244</td>
</tr>
<tr>
<td>25-hydroxyvitamin D</td>
<td>241, 242</td>
</tr>
<tr>
<td>serum</td>
<td>241</td>
</tr>
<tr>
<td>binding protein</td>
<td>241</td>
</tr>
<tr>
<td>metabolism</td>
<td>240</td>
</tr>
<tr>
<td>receptors</td>
<td>241</td>
</tr>
</tbody>
</table>