Abstract
Air pollution is associated with cardiovascular mortality. Inhaled ultrafine particles translocate into the blood. Amine-polystyrene ultrafine particles significantly enhance experimental thrombus formation in a damaged hamster vessel and shorten the closure time in the Platelet Function Analyser. Diesel exhaust particles are thrombogenic within one hour of intratracheal instillation and shorten the closure time ex vivo. These experimental observations provide a plausible biological explanation for the epidemiologically established link between air pollution and acute myocardial infarction.

Particulate air pollution is associated with cardiovascular morbidity and mortality [1,2]. Exposure to polluted air for as little as 2 hours increases the risk of myocardial infarction [3]. A plausible biological explanation for these epidemiological observations however is lacking. Most research has centered around the possible consequences of particle-induced pulmonary inflammation on the heart and other systems. The rationale for these studies is that cytokines and other mediators produced in the lungs are also released in the circulation and exert extrapulmonary effects.

Another line of research, that has not been pursued much so far, consists of studying the possible direct effects of particles that may pass from the lung into the circulation. The rationale for this approach is based on the observation that it is the ultrafine fraction of the particles that probably is most hazardous to health. Ultrafine particles have a diameter below 100 nm, remain airborne for a long time and deposit in greater numbers and deeper into the lungs than larger-sized particles. Their small size makes it conceivable that they translocate from the lung into the blood, and this indeed has recently been demonstrated in the hamster [4] and in man [5], using radioactively labeled ultrafine particles.

We have, therefore, studied the effects of ultrafine particles on a relevant cardiovascular endpoint, namely thrombus formation in a diseased vessel. For this purpose we took advantage of a validated hamster model of endothelial injury, using Rose Bengal and local vessel exposure to green light; thrombus development over the free radical-damaged endothelium is continuously registered over 40 minutes by transillumination [6]. In initial experiments, 60 nm polystyrene particles were administered either intravenously or intratracheally. Although these particles clearly are not pollutant particles, they offer the technical advantage of being well characterized in terms of size and chemical composition, which is not the case for the commonly used complex mixtures of diesel exhaust particles.
concentrated urban air particles or residual oil fly ash particles.

Because most ambient particles are charged, we studied
unmodified as well as carboxylate- and amine-polystyrene
particles. Only amine-polystyrene particles significantly
enhanced thrombus formation in the damaged vessel, whether
administered intravenously [7] or intratracheally [8]. This
enhancement was already observed within the first hour after
administration. Amine-polystyrene particles also shortened in
vitro the closure time in the Platelet Function Analyser (PFA-
100). Interestingly, while both 60 nm and 400 nm amine-par-
ticles caused inflammatory changes in bronchoalveolar lavage
fluid following intratracheal instillation and shortened in vitro
PFA closure times, only the 60 nm amine-particles enhanced
thrombus formation in vivo, indicating that the translocation of
the ultrafine particles into the systemic circulation is a prereq-
usite for the early enhancement of thrombosis following
exposure to microparticles.

Transmission electron microscopy of diesel exhaust parti-
cles from the National Institute of Standards and Technology
(Gaithersburg, MD, USA) revealed particles 20-50 nm in
diameter. In the next study, diesel exhaust particles were there-
fore instilled into the trachea of hamsters. These experiments
confirmed that at relevant concentrations these particles are
thrombogenic in vivo already within one hour of administra-
tion and that they shorten the PFA-100 closure time ex vivo
[9]. These observations provide a first plausible biological
explanation for the epidemiologically established link between
air pollution and acute myocardial infarction.

References

1. Schwartz J. Air pollution and hospital admis-
sions for heart disease in eight US counties.
2. Poloniecki JD, Atkinson RW, Anderson HR.
Daily time series for cardiovascular hospital
admissions and previous day’s air pollution in
London, U.K. Occup Environ Med 1997; 54:
535-540.
3. Peters A, Dockery DW, Muller JE, Mittleman
MA. Increased particulate air pollution and the
triggering of myocardial infarction. Circulation 2001;
103: 2810-2815.
PH, Verbruggen A, Nemery B. Passage of
intratracheally instilled ultrafine particles
from the lung into the systemic circulation in
hamster. Am J Respir Crit Care Med 2001;
164: 1665-1668.
5. Nemmar A, Hoet PHM, Vanquickenborne B,
Dinsdale D, Thomeer M, Hoilaerts MF,
Vanbilloen H, Mortelmans L, Nemery B.
Passage of inhaled particles into the blood cir-
culation in humans. Circulation 2002; 105:
411-414.
6. Kawasaki T, Kaida T, Arnout J, Vermylen J,
Hoylaerts MF. A new animal model of throm-
bophilia confirms that high plasma factor VIII
levels are thrombogenic. Thromb Haemost
7. Nemmar A, Hoilaerts MF, Hoet PHM,
Vernylen J, Nemery B. Ultrafine particles
affect experimental thrombosis in an in vivo
hamster model. Am J Respir Crit Care Med.
2002; 166: 998-1004.
8. Nemmar A, Hoilaerts MF, Hoet PHM,
Vernylen J, Nemery B. Size effect of intratra-
cheally instilled particles on pulmonary
inflammation and vascular thrombosis.
9. Nemmar A, Hoet PHM, Dinsdale D, Vernylen
J, Hoylaerts MF, Nemery B. Diesel exhaust
particles in lung acutely enhance experimental
peripheral thrombosis. Circulation 2003;