Neuronal Apoptosis in Neurodegenerative Diseases: From Basic Research to Clinical Application

Pawel Kermer Jan Liman Jochen H. Weishaupt Mathias Bähr

Department of Neurology, University of Göttingen, Göttingen, Germany

Key Words
Apoptosis, neuronal · Caspases · Death effector domains · Neurodegeneration · Treatment, limitations

Abstract
In recent years, the investigation of erroneous regulation of apoptotic mechanisms during acute and chronic injury of neuronal cells has gained increasing attention. Besides acute neuronal trauma and ischemia, chronic neurodegenerative diseases like Alzheimer’s, Huntington’s, Parkinson’s and Lou-Gehrig’s disease (amyotrophic lateral sclerosis) are of particular interest. The present article will provide an overview of basic apoptotic mechanisms, the contribution of neuronal apoptosis to the above-mentioned disorders, potential clinical applications and their limitations and the possible implications for future studies regarding these neurodegenerative diseases.

The biological phenomenon of apoptosis was initially described in 1972 by Kerr et al. [1]. Morphologically, apoptotic cell death is characterized by the succession of chromatin condensation (pyknosis), nuclear fragmentation, cell contraction and decay into small fragments surrounded by plasma membrane (apoptotic bodies). Apoptotic cells are opsonized in vivo by surrounding cells without accompanying inflammation, since the integrity of plasma membranes and cell organelles persists and release of intracellular components is prevented during the suicide program.

Apoptosis can occur locally, without damaging healthy adjacent cells. This is in contrast to necrotic cell death, which exhibits rapid cell swelling and subsequent rupture of the plasma membrane. Due to the inflammatory reaction as a consequence of cell rupture, necrosis usually induces substantial secondary cell damage in the surrounding tissue. Since necrosis and apoptosis differ both biochemically and structurally from each other, they were originally classified as two separate forms of cell death. In recent years though, there is increasing evidence that this distinction is not so clear and that at least traumatic cell death can be better viewed as a continuum between apoptosis and necrosis [2–5].

In a physiological context, apoptosis or programmed cell death does not only account for the maintenance of a constant size and cell number in proliferative tissues like the skin, intestinal mucosa or the immune system, but also plays a crucial role during the development of the peripheral and central nervous system. Neuronal apoptosis, for example, is pronounced at the time of the genesis of synapses [6]. Additionally, for the fate of the individual
neuron, the supply of neurotrophic factors, which promote the survival and growth of nerve cells, seems to be important because such signaling will activate anti-apoptotic pathways within the cell [7, 8].

Degeneration of one or more nerve cell populations is a major feature in many acute and chronic neurological diseases. As discussed below, many criteria for apoptotic cell death are also fulfilled during the course of chronic neurodegenerative diseases. Therefore, the development of new therapeutic strategies for the treatment of neurodegenerative diseases requires an understanding of the molecular mechanisms underlying neuronal apoptosis. Extrinsic and intrinsic apoptosis pathways and several possible avenues for crosstalk between them can be distinguished. Whereas the extrinsic pathway is initiated by cell surface activation of cytokine receptors of the tumor necrosis factor (TNF) family, the intrinsic pathway depends on the integrity and function of mitochondria within the cell [9]. Below, key proteins involved in the regulation of neuronal apoptosis will be described (table 1).

Key Players in Neuronal Apoptosis

The morphologic and biochemical changes during apoptotic cell death are mediated by a family of intracellular cysteine proteases named *caspases* (cysteine aspartyl-specific proteases), which cleave their substrates at aspartate residues [10]. Activation of caspases themselves also occurs by cleavage at such aspartate residues. Hence, in addition to other cellular substrates, caspases can activate themselves in a self-propagating cascade. So far, at least 14 different caspases have been identified, of which 11 have been found in the human genome [11]. They are usually divided into upstream initiator caspases and downstream effector caspases by the characteristics of their N-terminal pro-domain [9]. While initiator caspases (e.g. caspase-1, -8 and -9) can interact with other activating proteins through their long pro-domains, the short pro-domain in effector caspases up to date has no known function (e.g. caspase-3). Caspase-8, an initiator of the extrinsic signaling pathway, contains a so-called *death effector domain* (DED) at its N-terminus through which it interacts with and is activated by other DED proteins (at

<table>
<thead>
<tr>
<th>Protein family</th>
<th>Members</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caspases</td>
<td>14 caspases identified, 11 in the human genome</td>
<td>cleave substrates at Asp residues and mediate apoptotic cell death</td>
</tr>
<tr>
<td>DED proteins</td>
<td>at least 12 members identified so far</td>
<td>interaction of proteins of the apoptosis cascade, e.g. caspase-8/Fadd</td>
</tr>
<tr>
<td>DD proteins</td>
<td>at least 24 members identified so far; Fadd as the most prominent contains DD and DED</td>
<td>interaction of proteins of the apoptosis cascade, e.g. Fadd/TNF receptor family</td>
</tr>
<tr>
<td>Cytochrome C</td>
<td>single protein</td>
<td>released from mitochondria, forms apoptosome with Apaf-1 and caspase-9</td>
</tr>
<tr>
<td>Smac/Diablo</td>
<td>single protein</td>
<td>released from mitochondria, inhibits IAPs</td>
</tr>
<tr>
<td>Bcl proteins</td>
<td>25 pro- and anti-apoptotic members</td>
<td>form homo-/hetero-dimers; control death program, e.g. by modulating mitochondrial protein release</td>
</tr>
<tr>
<td>BAG proteins</td>
<td>6 members identified in the human genome</td>
<td>e.g. bind to Bcl-2 and Hsp70; link cellular stress responses to the apoptotic death program</td>
</tr>
<tr>
<td>BAR</td>
<td>so far no additional members identified</td>
<td>binds to Bcl-2 and caspase-8; links extrinsic and intrinsic apoptosis pathway</td>
</tr>
<tr>
<td>BI-1</td>
<td>so far no additional members identified</td>
<td>inhibitor of Bax-induced cell death</td>
</tr>
<tr>
<td>CARD proteins</td>
<td>at least 20 members identified so far, e.g. caspases, Apaf-1</td>
<td>for example the apoptosome formation</td>
</tr>
<tr>
<td>IAPs</td>
<td>six members identified in humans; at least one is expressed in neurons</td>
<td>inhibition of activated caspases</td>
</tr>
</tbody>
</table>
Fig. 1. Signal transduction of apoptotic cell death. The extrinsic apoptosis pathway involves receptor-mediated activation of caspase-8 with subsequent activation of the effector caspase-3. Within the intrinsic apoptosis pathway, caspase-3 is activated after release of cytochrome-c from mitochondria and formation of the oligomeric complex called apoptosome consisting of caspase-9, Apaf-1 and cytochrome-c. Mitochondrial pathology is controlled not only by Bcl-2 and Bcl-modulating proteins. Multiple crosstalks between the apoptosis pathways exist.

At least 12 DED proteins identified so far (Fig. 1). One of these DED proteins (Fadd) additionally contains a so-called death domain (DD) that has been shown to interact with death receptors of the TNF family (at least 24 DD proteins have been identified [for review, see ref. 9]).

Although the activation of caspase-8 in neurons after different death stimuli has been described [12], the induction of neuronal apoptosis by death ligands and receptors is still controversially discussed. Interestingly, the p75 nerve growth factor receptor (p75NGFR) contains a modified death domain [13] and under special circumstances its activation can induce apoptosis in neurons [14]. However, it has to be noted that developmental and diseasespecific induction pathways may vary significantly, particularly since adult neurons no longer show p75NGFR expression [15, 16].

There is considerable evidence emerging from studies in knockout and transgenic animals concerning the relevance of the intrinsic signal transduction pathway for neuronal apoptosis [17]. DNA damage (hereditary or induced), increased expression of the tumor suppressor gene p53, increased calcium influx by overstimulation of glutamate receptors (excitotoxicity), the damage of components of the plasma membrane, the formation of free...
radicals (oxidative stress) and metabolic stress (hypoxia, hypoglycemia), for example, can cause mitochondrial changes resulting in the formation of pores in the mitochondrial membrane (permeability transition pores) and release of several apoptosis-relevant molecules (cytochrome C, SMAC/Diablo, apoptosis-inducing factor).

Alterations in mitochondrial function that eventually lead to cell death are controlled and modulated by proteins of the Bcl-2 family. Among the multiplicity of Bcl-2 proteins [9] there exist some with pro-apoptotic (e.g. Bax, Bad, Bid) and others with anti-apoptotic effects (e.g. Bcl-2, Bcl XL). Formation of homo and/or hetero dimers and the equilibrium shift between pro- and anti-apoptotic members of the Bcl-2 family may determine the sensitivity of a cell to apoptotic stimuli [18–20]. For instance, it has been shown that in neurons, the calcium-activated phosphatase calcineurin de-phosphorylates the pro-apoptotic protein Bad, thereby initiating the apoptotic cascade [21]. In recent years, proteins binding to Bcl-2 family proteins modulating their activity have received increased attention. Among such Bcl-2 binding proteins with anti-apoptotic activity is the so-called BAG family [22]. So far, six members of this family have been identified in humans. All of them bind to heat shock 70 family molecular chaperones through their BAG domain and link cellular stress responses to the apoptotic death program. In neurons BAG1 was identified as a potent neuroprotectant and a regulator of neuronal differentiation [23]. In vivo, BAG1 mediates resistance against stroke, increasing Hsp70 expression on posttranscriptional levels [24]. Another Bcl-2 binding protein with neuroprotective activity is the bifunctional apoptosis regulator (BAR). BAR is a multidomain protein that was first discovered as an inhibitor of Bax-induced cell death [25]. It is capable of inhibiting apoptosis induced by TNF family death receptors (‘extrinsic pathway’) as well as mitochondria-dependent apoptosis (‘intrinsic pathway’). Interaction of BAR with Bcl-2 or Bcl-XL via an SAM domain may contribute to the anti-apoptotic properties of BAR. Moreover, the BAR protein contains a domain that is similar to classical death effector domains (termed ‘pseudo DEDs’) that mediate caspase-8 binding. Therefore, BAR has been suggested to act as a scaffold protein that can bridge components of extrinsic and intrinsic apoptosis pathways. Finally, BAR is highly expressed in neurons and promotes survival after diverse apoptotic stimuli [26]. BI-1 (Bax inhibitor-1 [27]), a protein with six transmembrane domains, has emerged as potent anti-apoptotic agent in plants and was recently identified as prominent antigen in human gliomas [28]. Its function in neurons has not been uncovered yet.

Following its release from mitochondria into the cytoplasm, cytochrome-c (an enzyme of the respiratory chain) forms oligomeric complexes (apoptosomes) together with Apaf-1 (apoptotic protease activation factor-1) and caspase-9. This results in the activation of caspase-9 [29, 30]. The interaction of Apaf-1 and caspase-9 is mediated through a CARD domain (caspase-associated recruitment domain) contained in both proteins [31]. For the activation of caspase-9, a mechanism called ‘induced proximity’ is believed to be responsible [32]. Through binding to Apaf-1 several inactive proforms of caspase-9 are brought into close proximity to one another. Since the proform of this caspase possesses some protease activity, the association of multiple caspase molecules promotes cleavage and the transition into the fully active form. Apart from procaspases with a CARD domain (caspase-1, -2, -4, -5 and -9), the human genome contains at least 20 CARD proteins that either boost or restrain apoptosis [9]. Active caspase-9 cleaves and activates the effector caspase-3, which is responsible for driving execution of the cell death program [33].

In addition to Bcl-2 and CARD proteins with pro- or anti-apoptotic effects, there is also a family of apoptosis suppressors called IAPs (inhibitor of apoptosis proteins) with their BIR (baculovirus IAP repeat) domain. Other than viral and bacterial IAPs, which are essential for the reproduction and survival of the germs in the host organism, so far six IAPs have been identified in humans [9], of which at least one is expressed in neurons (neural apoptosis inhibitory protein). IAPs prevent the ‘unintentional’ activation of effector caspases, but in turn are subject to negative regulation by the mitochondrial factor Smac/Diablo. Thereby the effective operational sequence of the apoptotic cascade after appropriate stimulation is ensured [33]. Hereditary mutations of neural apoptosis inhibitory protein with progressive degeneration of neurons are found in familial cases of spino-muscular atrophy, a motoneuron disease [34].

Moreover, there are further signalling pathways that are not directly associated with the apoptotic machinery, but nevertheless able to interfere with and restrain it. These pathways include the PI3K/Akt signalling pathway [35] and the mitogen-activated protein kinase pathway [36]. Other anti-apoptotic signals are mediated by c-jun amino terminal kinase (JNK) [37] or the activation of transcription factors such as CREB (cAMP-responsive element binding protein) and NF-κB [for review, see ref. 6, 9, 17]. Being beyond the scope of this review, the reader is referred to more specialized articles about these pathways.
Neuronal Apoptosis during Neurodegenerative Disease

For all neurodegenerative diseases mentioned in this review, the incidence of neuronal apoptosis during the course of disease has been shown by investigations in animal and tissue culture models. Studies on postmortem human brain tissue have yielded contradictory results, because clear detection of apoptotic cells is difficult or problematic. The inability to demonstrate apoptosis in the tissues affected may be explained by the fact that cell death in these chronic illnesses occurs over decades; the suicide program in the single cell, however, is executed within a few hours [6, 38]. Thus, synchronous detection of a substantial number of apoptotic neurons at any given time point seems almost impossible. In addition, there is a lack of studies employing drugs that interfere with the apoptotic cascade in human neurodegenerative diseases. The low specificity and selectivity of currently available anti-apoptotic substances produces undesirable adverse effects. In contrast, studies of the pathological mechanisms underlying neuronal apoptosis in hereditary forms of neurodegenerative diseases proved to be very valuable, frequently linking neuronal apoptosis with oxidative stress and mitochondrial dysfunction. Below, evidence for the involvement of apoptotic neuronal death in morbus Parkinson, morbus Huntington, morbus Alzheimer and amyotrophic lateral sclerosis (ALS) will be summarized.

Morbus Parkinson

The incidence of Parkinson’s disease is about 1/5,000 at an age over 50 years [39]. This disease is caused by the loss of 50–60% of dopaminergic neurons in the substantia nigra within 10–20 years, resulting in the loss of a neural control loop that becomes clinically apparent by the well-known triad – tremor, rigor, akinnesia – with a differential accentuation of these symptoms in each individual case. The dopaminergic deficit can be compensated at least temporarily by oral treatment with the dopamine precursor L-DOPA, dopamine agonists and other substances; a convincing causal therapy for the loss of neurons, however, does not exist so far.

Some studies on postmortem brain tissue of Parkinson patients have reported the presence of apoptotic cells and DNA fragmentation in the substantia nigra [40–42]. However, these findings were not confirmed by others [43, 44]. Recently, however, Hartmann et al. [45] demonstrated that caspase-3 is a critical factor for cell death in the substantia nigra of Parkinson patients. Additionally, initiator caspases seem to be strongly expressed in these neurons possibly contributing to cell death [38]. Genetic mutations in the proteins Parkin, α-synuclein and others have been shown to contribute to the pathogenesis of familiar forms of Parkinson’s disease, where undissolvable aggregates of α-synuclein form a component of the so-called Lewy bodies [46].

The physiological function of α-synuclein is not yet known, however it appears to play a role in the conversion of synaptic vesicles and synaptic plasticity [47]. The mutation of the Parkin gene however leads to a loss of function of the protein. As an E3-ligase, Parkin is involved in protein ubiquitination and degradation by the proteasome complex. In this regard, the observation that Parkin substrate proteins such as CDCrel-1 and synphilin-1 can be commonly localized to Lewy bodies [47] are of particular interest. In the case of mutated α-synuclein, it is possible that Parkin gets recruited into inclusion bodies and thereby withdrawn from the protein degradation machinery. Thus, it can be assumed that pathological accumulation of misfolded proteins in cells carrying a mutation in one of both genes leads to increased neurotoxicity. This hypothesis is supported by the observations that Parkin expression is increased under conditions of cellular stress, and that misfolded proteins, like Pael r (Parkin-associated endothelin receptor-like receptor) are removed from the endoplasmic reticulum [48]. The notion that Parkin acts as a suppressor of oxidative stress might be of critical importance for dopaminergic neurons in the substantia nigra, which are particularly vulnerable to oxidative stress [47]. The relevance of oxidative stress for the pathogenesis of Parkinson’s disease is further supported by investigations showing a deficit of anti-oxidative glutathione with subsequent lack of mitochondria complex I and dopamine in nigral neurons [49, 50]. A lack of glutathione is held responsible for the damage of mitochondria with subsequent neuronal apoptosis [51].

The study of apoptotic cell death in Parkinson’s disease has been advanced by the development of animal and cell culture models, in which the neurotoxins 1-methyl-4-phenyl 1,2,3,6-tetrahydropyridine (MPP+) or 6-hydroxydopamine (6-OHDA) are employed. For example, increased striatal JNK activity, a hallmark of apoptosis, was found in these models [52, 53], whereas simultaneous application of a JNK inhibitor (CEP-1347) proved to be neuroprotective [54]. Besides the activation of caspase-3 in dopaminergic neurons, increased expression of Bax could be observed in these models as well [55]. At the same time, mice overexpressing the protective Bcl-2 protein proved to be resistant to these cell death stimuli [38].

Neuronal Apoptosis during Neurodegenerative Disease

By [author] from [journal], 2004;1:9–19

Neurodegenerative Dis 2004;1:9–19

13
Interestingly, Parkin protein has recently been identified as substrate for caspase-3 [56]. The underlying cause of the disease process, however, yet has to be elucidated. Nevertheless, mitochondrial dysfunction, with subsequent initiation of the apoptotic cascade, plays an important role in almost all models for the pathogenesis of Parkinson’s disease. Therefore, therapeutic stabilization of mitochondrial function or better, the complete avoidance of mitochondrial dysfunction by reduction of oxidative stress is particularly promising.

Morbus Huntington

Huntington’s disease is an autosomal dominant inherited neurodegenerative illness with a prevalence of approximately 5/100,000 inhabitants in Western Europe [57]. It is accompanied by motor dysfunction, resulting in the progressive impairment of coordinated voluntary movements. Together with progressive cognitive restrictions, which are frequently leading to dementia, the illness is usually fatal within 15–20 years of onset. As cause of the illness, a mutation in the huntingtin gene could be identified. The physiological function of the huntingtin protein, however, is still unknown. The huntingtin gene mutation is characterized by surplus repeats of the trinucleotide sequence CAG coding for the amino acid glutamine, which lead to the formation of inclusion bodies and degeneration of mainly GABAergic neurons in the striatum. Individuals with 35 or less repeats are asymptomatic, whereas 36 or more CAG repeats are known to cause disease [58]. Earlier onset of the disease correlates with increased numbers of CAG repeats [59]. Up to now, there is no causal therapy.

Several observations pinpoint apoptotic neuronal death in the striatum throughout the course of Huntington’s disease. Dragunow et al. [60] were the first to show DNA strand breaks in these neurons [61, 62]. However, DNA strand breaks turned out to be a non-specific marker for apoptosis. Additionally, mutated huntingtin was shown to activate the JNK signaling pathway leading to subsequent neuronal apoptosis [63]. Excitotoxicity is also considered a pathogenetic factor in Huntington’s disease. If excitatory amino acids such as kainate are injected into the striatum, animals develop symptoms similar to that observed in Huntington’s disease [57, 64, 65]. Moreover, huntingtin has been demonstrated to be a substrate for the effector caspase-3, with the polyglutamine sequence in the mutated protein being favored for cleavage by caspases [66] ultimately resulting in cleaved molecules with increased neurotoxicity [67]. With regard to caspases, the inhibition of caspase-1 proved to be of benefit during the course of the disease in a mouse Huntington model [68]. Recently, it has been shown that mutated huntingtin has a decreased affinity for its binding partner Hip-1 (Huntingtin interacting protein-1 [69]). Free Hip-1 interacts with HIPPI (Hip-1 protein interactor) via its pseudo-DED domain and additionally binds the DED protein caspase-8 in a complex, whereby the apoptotic cascade is possibly initiated [70]. Since there is no causal treatment for Huntington’s disease so far, modulation of the apoptotic cascade is considered a promising therapeutic intervention.

Amyotrophic Lateral Sclerosis

ALS (Lou-Gehrig’s disease) is one of the most frequently occurring motoneuron diseases with adult onset (incidence 1–2 per 100,000 [5]). ALS is characterized by a progressive loss of motoneurons in the cortex and the ventral horn of the spinal cord. Progressive paralyses of all extremities as well as respiratory and sip musculature lead to death within 3–5 years after onset. The disease usually occurs sporadically.

As is the case in other neurodegenerative diseases, oxidative stress, the overactivation of glutamate receptors, and calcium overload are considered possible causative mechanisms [6]. In autosomal-dominant inherited cases (approximately 5% of all ALS patients) a mutation in the gene coding for superoxide dismutase could be identified. This enzyme physiologically exerts anti-oxidative and cytoprotective effects acting as free radical scavenger. There are four different hypotheses, how superoxide dismutase can act neurotoxic [71]: (1) the formation of hydroxyl radicals; (2) the nitrosylation of tyrosine residues in proteins by peroxynitrite derivates; (3) copper and zinc toxicity, and (4) pathological protein aggregation with the formation of inclusion bodies. Nonetheless, these current hypotheses all point to increased oxidative stress, leading to mitochondrial dysfunction and the activation of the intrinsic apoptosis cascade in the respective neurons. Increased expression of the pro-apoptotic protein Bax, with a concurrent decrease in the expression of Bel-2, as well as DNA fragmentation have been found in transgenic mouse models of ALS, and in the spinal cord ventral horn and the motor cortex of individuals that had died from ALS [71–74]. Furthermore, increased caspase-1 and -3 activity has been found in the motor cortex and spinal cords of patients [75, 76]. In addition, active caspase-3 was detected selectively in ventral horn neurons of those individuals [77]. The involvement of the apoptotic cascade in ALS is further underscored by findings that caspase inhibitors were neuroprotective both in animal and tissue culture models of the disease [71]. Finally, a contribution of
the p53 tumor suppressor gene to the degeneration of motoneurons has been proposed; however, this notion is controversial.

Morbus Alzheimer

Dementia of the Alzheimer type affects about 10% of the population over 65 years of age and up to 50% over 85 years of age [78]. Degeneration of neurons in the basal forebrain, hippocampus and cortex is a hallmark of Alzheimer’s disease. Besides decreased synaptic density and the loss of neurons, the brains of Alzheimer patients show characteristic histological changes at the neuronal level, i.e. the formation of so-called senile plaques, consisting of aggregates of the β-amyloid protein, and tangles, which occur through the accumulation of hyperphosphorylated tau, a protein associated with microtubuli. Although the number of neurons showing these characteristics is too small to explain the dysfunction and death of so many neurons in Alzheimer brains, changes in β-amyloid metabolism are believed to play a predominant role in the observed pathology. β-Amyloid is generated by cleavage of amyloid precursor protein, which is mutated in a hereditary form of Alzheimer’s disease. Exposure to β-amyloid induces apoptosis in neurons. Cell death is preceded by the activation of caspases and altered expression levels of Bcl-2 family proteins [79, 80]. The mechanisms by which β-amyloid induces cell death include the peroxidation of membrane lipids, oxidative stress induced by calcium influx, and mitochondrial dysfunction [6]. In other forms of familial Alzheimer’s disease, mutations in the presenilin gene 1 and 2 were identified. These mutations also alter the normal proteolytic cleavage of amyloid precursor protein, sensitizing neuronal cells to apoptotic stimuli in vitro. However, results from transgenic mice overexpressing either amyloid precursor protein or presenilins remain contradictory with respect to the functional relevance of these proteins in Alzheimer’s dementia [79]. Nevertheless, the altered degradation and pathological aggregation of mutated proteins, with consecutive activation of the apoptosis machinery seem to be crucial for neuronal death in Alzheimer’s models.

Reduced expression of the neurotrophic factors NGF and BDNF were found in postmortem studies on brains of Alzheimer patients [81, 82]. Decreases in the endogenous levels of neurotrophic factors have been shown to increase the susceptibility of neurons to oxidative stress, and have been attributed to lowered synaptic density. As is the case with other neurodegenerative illnesses, the presence of DNA fragmentation, caspase activation, and the expression of other apoptosis-related genes has been described [80]. However, particularly in Alzheimer’s disease, the current data are contradictory [79]. For example, it is still unclear whether the apoptotic process is directly responsible for the death of neurons. Although apoptosis may not be the primary cause of neuronal degeneration in Alzheimer’s disease, programmed cell death may contribute to the continued progression of disease pathology [79]. Thus, interfering with apoptosis is still of interest as a potential therapeutic strategy in light of the fact that current treatments for Alzheimer’s disease are mainly symptomatic and rather inefficient.

Transfer of Knowledge from Bench to Bedside – Limitations and Perspectives:

Therapeutic Strategies and Their Problems

For all the neurodegenerative diseases mentioned above, tissue culture and animal models do exist, reproducing some of the pathophysiological characteristics of the respective disease. These models range from the application of neurotoxins to cultured cells, the administration of toxins to animals, and the use of lesion models in transgenic animals. However, from the multitude of anti-apoptotic substances that have been tested in basic research models, few have reached clinical testing in patients thus far (fig. 2). Among these substances are neurotrophic factors, mitochondria-stabilizing agents, anti-oxidants, anti-toxins, antibiotics, glutamate receptor and calcium channel blockers as well as caspase inhibitors [83].

One anti-apoptotic drug that has recently been approved for clinical use is Akatinol® (memantine). Originally released for the treatment of Parkinson’s disease and dementia more than 10 years ago [84], this drug has experienced a renaissance after being tested successfully in an US phase III trial for the treatment of severe Alzheimer’s disease. Memantine is classified as a non-competitive inhibitor of the NMDA-type glutamate receptor that has been shown to interfere with glutamate-induced apoptosis and processes of learning and memory. Currently, derivatives are being developed in order to optimize neuroprotective benefits and minimize adverse effects.

Of course, we have to ask why so many promising drugs that are effective in basic research models fail to improve the outcome of neurodegenerative diseases in humans. First, patients and clinicians have to deal with adverse drug-related side effects. Although, clinicians may attempt to balance the positive and negative therapeutic effects of medication, unwanted side effects can lead to low compliance by patients which has previously
been attributed to the failure of many phase I and II clinical trials. The profiles of positive and negative effects of therapeutic interventions are closely related to the specificity of the compounds, the applied dosage, and the route of application. Drug effects at sites distant from the desired location may limit the therapeutic benefits due to the inability to achieve adequate concentrations of the medication in the brain without intoxicating the rest of the body. The blood brain barrier in humans represents the most difficult obstacle to CNS drug delivery, and in particular, the administration of larger molecular-weight drugs. Moreover, drugs may be broken down or inactivated in the periphery of the body if injected intravenously or orally administered. These problems rarely arise in animal models, where the drug is usually applied by stereotaxic injection into the ventricles or close to the site of injury.

Beyond the impractical method of drug administration in animals, animal models of disease tend to have more reproducible and standardized temporal profiles, lesion extents, and therapeutic outcomes. In addition, the animals that develop disease are for the most part otherwise healthy. To the contrary, patients in the clinical setting are often multi-morbid and treated with multiple drugs, thereby significantly narrowing treatment options for physicians.

Another problem to be considered is the therapeutic window. Usually, in animal models, drugs are applied early after lesioning, at the onset of disease or before symptoms occur. While these models contribute to the understanding of the molecular mechanisms of neurodegeneration and provide a general basis for therapeutic strategies, they are less helpful regarding drug application in a clinical setting. A closer look at Parkinson’s disease, for example, immediately illustrates several limitations of animal models. Patients usually develop symptoms when the number of dopaminergic neurons in the substantia nigra has decreased by 60–80%, with the slow process of neuronal degeneration already lasting for years [38]. Thus, our therapeutic goal is not the rescue of affected cells but rather the preservation of the remaining neurons. Additional difficulties arise from the existence of diverse forms of Parkinson’s disease based on differential diagnoses. We can distinguish hereditary forms, idiopathic forms where the cause is not known, toxic forms resulting from poisoning, and a form of the disease that is embedded in syndromes where neuronal degeneration not only occurs in the substantia nigra but also in other independent brain...
regions at the same time (multiple system atrophy [85]). In addition, from a histological point of view, considerable variability in terms of the formation of cellular inclusion bodies (Lewy bodies) has been observed in humans. It seems reasonable to speculate that, while sharing the same or at least similar symptoms, all these forms of Parkinson’s disease represent different entities, following different pathophysiological pathways and consequently requiring specific treatment. Nonetheless, common apoptotic pathways may be shared regardless of the upstream death initiator, permitting the development of broadly applicable therapeutic strategies.

Perspectives

We have outlined some of the limitations of translating basic research to clinical applications. Now we have to consider how the current approach to the scientific and clinical handling of neurodegenerative diseases can be optimized and focused, thereby facilitating the transfer from what we learn at the bench to what we do at the bedside. Doubtless, interdisciplinary interactions merit some improvement. Building up research teams consisting of basic scientists, physician scientists, clinicians, and possibly individuals not related to the field should enable us to work out strategies for a better experimental design in the laboratory, and accelerate the transfer of knowledge to the clinic. Close contacts with the biotechnology and pharmaceutical industry are necessary to enhance the implementation of new therapeutic strategies in large clinical trials.

In the future, animal models have to be improved in order to more closely approximate human disease. Lesion models and neuroprotective strategies should be adjusted to fit realistic time frames and procedures that reflect available treatment avenues in the hospital. Instead of testing yet another drug that acts on a cytoprotective pathway previously analyzed, one might consider combining neuroprotective agents that act on different pathways or at different levels of the same signal transduction pathway. Ultimately, results obtained through such studies might enable us to reduce the adverse effects observed in clinical applications, by decreasing the dosage of a single drug while still benefiting from additive effects of the drug combination. The reduction of undesirable drug properties can also be achieved by altering the binding characteristics of a protein, deleting or adding domains, or mutating binding sites. The ultimate goal of protein modification is the generation of small synthetic drugs that can mimic the protective effects of natural proteins but avoid the negative ones entirely. The engineering of new molecules may also be useful for circumventing the current problem with respect to targeted drug delivery. The intact blood-brain barrier prevents proteins from entering the brain. Obviously, surgical approaches to bypass this barrier are only feasible in a small number of patients. Consequently, the design of compounds bearing moieties facilitating the transport into the central nervous system (e.g. TAT proteins [86–88]) represents a promising alternative. Moreover, genetically modified viral vectors appear to be useful tools to get therapeutic agents where they are needed [55, 89]. Antisense knockdown strategies that lower the expression of disease-associated genes, if specific enough, represent another approach for the treatment of hereditary neurodegenerative diseases where mutated proteins are held responsible for their pathophysiology [90]. As an alternative treatment option that still has to be optimized, first studies in Alzheimer patients have been launched employing vaccination against pathological proteins [91].

In the clinical setting, new surrogate markers for disease progression and therapy monitoring are required. At present, studies involving patients make use of clinical parameters (scales, mortality) as outcome measures, and these are less accurate than the parameters used in animal models. Defining such markers on the basis of the different processes that lead to neuronal degeneration and the application of new imaging techniques in vivo would also be helpful to revise the current classifications of neurodegenerative diseases. By intensifying research on genetic mapping and potential marker proteins, we may be able to uncover new criteria for regrouping or reclassifying diseases. Hopefully, we will soon be able to provide every patient suffering from neurodegenerative disease with a more specified and diversified therapy taking into account individual symptoms as well as histology and pathophysiology. Then, the apparent gap between the bench and bedside may not remain as wide as it is today.
References

1. Kerr JF, Wyllie AH, Currie AR: Apoptosis: A basic biological phenomenon with wide-rang-
2. Porter-Cailliau C, Price DL, Martin LJ: Excit-
toxo neural death in the immature brain is an apoptosis-necrosis morphological contin-
3. Porter-Cailliau C, Price DL, Martin LJ: Non-
NMDA and NMDA receptor-mediated excitoto-
xico neural deaths in adult brain are mor-
rodegeneration in excitotoxicity, global cere-
bral ischemia, and target deprivation: A per-
spective on the contributions of apoptosis and
5. Martin LJ: Neurotional cell death in nervous sys-
129.
7. Barde YA: Trophic factors and neuronal sur-
8. Mattis MP, Lindvall O: Neurotrophic factor and
345.
9. Reed JC: Mechanisms of apoptosis. Am J Pa-
345.
345.
345.
15. Porter-Cailliau C, Price DL, Martin LJ: Excit-
toxo neural death in the immature brain is an apoptosis-necrosis morphological contin-
16. Porter-Cailliau C, Price DL, Martin LJ: Non-
NMDA and NMDA receptor-mediated excitoto-
xico neural deaths in adult brain are mor-
17. Cell 1993;1:7A. Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Porter-Cailliau C: Neu-
rodegeneration in excitotoxicity, global cere-
bral ischemia, and target deprivation: A per-
spective on the contributions of apoptosis and
5. Martin LJ: Neurotional cell death in nervous sys-
129.
7. Barde YA: Trophic factors and neuronal sur-
8. Mattis MP, Lindvall O: Neurotrophic factor and
345.
9. Reed JC: Mechanisms of apoptosis. Am J Pa-
345.
345.

55 Nishi K: Expression of c-Jun in dopaminergic neurons of the substantia nigra in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Brain Res 1997;771:133–141.

Neuronal Apoptosis

Neurodegenerative Dis 2004;1:9–19