Subject Index

Acute renal failure (ARF)
 cell necrosis mechanisms 117
 intensive care unit
 patient characteristics 161, 162
 prognosis 169, 170
 treatment
 obstructive renal failure 165
 overview 163–165
 tumor lysis syndrome 165–169, 171
 tumor lysis syndrome, see Tumor lysis syndrome
 uric acid toxicity 117, 118, 139, 140, 150
Alcohol, hyperuricemia risks 16
Alkalization therapy
 acute renal failure related hyperuricemia 164
 tumor lysis syndrome management 71, 82, 99, 168, 169
 uric acid stone management 144
Allopurinol
 drug interactions 38, 39
 hyperuricemia management 16, 17, 29–31, 119, 120
 kidney transplant patient treatment 128, 129
 mechanism of action 36, 166
 pharmacokinetics 37, 38
 tumor lysis syndrome prevention and management 51, 71, 72, 77, 82, 153, 166, 167
 uric acid nephropathy treatment 140, 141, 153
 uric acid stone management 142, 144
Aspirin, hyperuricemia risks 16
Atrial natriuretic peptide, acute renal failure related hyperuricemia management 165
Bone marrow transplantation (BMT)
 cyclosporine A induction of hyperuricemia 108, 109
 hyperuricemia risks and pathophysiology 106–108
 Lesch–Nyhan disease management 110, 111
 metabolic syndrome and hyperuricemia 109, 110
Cancer, see Lymphoma; Tumor lysis syndrome
Cardiovascular disease, hyperuricemia comorbidity 12, 13, 157
 kidney transplant patients 127, 128
Chronic kidney disease, hyperuricemia risks and management 155–158
Colchicine, acute gout management 15
Corticosteroids, acute gout management 15
Cyclosporine A (CsA), hyperuricemia induction 108, 109, 125, 126, 128, 129
Dietary restriction, purines 16
Familial juvenile hyperuricemic nephropathy (FJHN)
 gene mutations 32
 hyperuricemia 31, 32
Fenofibrate, hyperuricemia management 18
Glycogenosis hyperuricemia
clinical characteristics 30
molecular features 31
treatment 31
types 30
Gout
classification 6, 7
clinical features
acute gouty arthritis 10, 11
asymptomatic hyperuricemia 10
chronic tophaceous gout 11, 12
elderly patients 12
intercritical gout 11
overview 2
women 12
young patients 12
diagnosis 10
epidemiology 2, 3
etiology 3–5
management
acute attack 14, 15
hyperuricemia correction 15–18
prophylaxis 15
pathogenesis 5–9

Hemodialysis, tumor lysis syndrome
prevention and management 73, 120, 121
Hyperkalemia
management 152, 153
tumor lysis syndrome pathophysiology
63, 64, 151, 152
Hyperuricemia
acquired causes 8, 16
bone marrow transplantation, see Bone marrow transplantation
cancer, see Lymphoma; Tumor lysis syndrome
classification 6, 7
correction 15–18
definition 2
diagnosis 10
kidney transplantation, see Kidney transplantation
renal, see Renal hyperuricemia
renal toxicity 117, 118, 139, 140, 150
Hypoxanthine-guanine phosphoribosyltransferase (HGPRT)
deficiency, see also Lesch-Nyhan disease
heredity 7
mutations 23–25
function 6, 22, 23
genotype–phenotype correlation 25–28

Insulin resistance, see also Metabolic syndrome
hyperuricemia comorbidity 14
renal hyperuricemia risks 137

Kidney transplantation
chronic rejection 125
hyperuricemia
cardiovascular disease risks 127, 128
chronic allograft nephropathy risks 126, 127
management 128, 129
pathophysiology 125, 126

Lead, gouty nephropathy risks 137, 138
Lesch-Nyhan disease
bone marrow transplantation 110, 111
clinical features 23
epidemiology 22, 23
gene mutations 23–25
genotype-phenotype correlation 25–28
heredity 22
hyperuricemia and consequences 24
treatment 25

Losartan
hyperuricemia management 18, 157
renal urate clearance effects 138

Lymphoma
autologous stem cell transplantation,
peripheral blood progenitor cells 94, 95
high-dose sequential chemotherapy
autologous stem cell transplantation 95–97
Italian experience 100–102
nephrotoxicity prophylaxis 97–99
principles 95
tumor lysis syndrome, see Tumor lysis syndrome

Metabolic syndrome, hyperuricemia risks
following bone marrow transplantation 109, 110
Nephrolithiasis, see Uric acid stones
Nonsteroidal anti-inflammatory drugs (NSAIDs)
 acute gout management 14, 15
gout prophylaxis 15

Phosphoribosyl pyrophosphate (PRPP) metabolism 5
 synthetase
 mutations 7, 29
 overactivity and hyperuricemia clinical characteristics 28
 consequences 29
 molecular features 29
treatment 29, 30
Probenecid
 drug interactions 38, 40
 hyperuricemia management 17
 mechanism of action 39
 pharmacokinetics 40
Purines
 dietary restriction 16
 metabolism 5, 6
Rasburicase
 acute renal failure patients 154, 155
costs 77, 88, 170
drug interactions 38, 42
hyperuricemia management 119, 120
 mechanism of action 41
 pharmacokinetics 41, 42
production 41, 73, 120
 safety 75, 76
tumor lysis syndrome prevention and management
 adults 51, 73–76, 99
 children 83–91
 intensive care unit use 167, 168
Renal hyperuricemia
 clinical characteristics 31, 32
diagnosis 31
familial juvenile hyperuricemic nephropathy 31, 32
molecular features 32
uric acid renal handling
 anion transporter 134, 135, 138, 145
drug interference 134, 135
 hyperuricosuria 138, 139
 hypouricosuria 136, 137
 insulin effects 137
 lead and gouty nephropathy 137, 138
 overview 149, 150
 phases 133, 134
 urate transporter/channel 135, 136
Rhabdomyolysis, acute renal failure related hyperuricemia management 164
Sulfinpyrazone
 acute uric acid nephropathy induction 140
 hyperuricemia management 17
Syndrome X, see Metabolic syndrome
Tumor lysis syndrome (TLS)
 clinical features 80, 81
 history of study 48, 61
 incidence 62
 incidence by disease
 Burkitt’s lymphoma 54, 55
 childhood tumors 81, 82
 multiple myeloma 56
 non-Hodgkin’s lymphoma 55
 risk stratification by pathology 53, 54, 81, 151
 laboratory evaluation 82, 83
 pathophysiology
 acute renal failure 65, 66, 84, 85, 99, 116, 151
 hyperkalemia 63, 64, 151, 152
 hyperphosphatemia 64, 65
 hyperuricemia 65
 hypocalcemia 65
 metabolic acidosis 66, 67
 overview 63, 69
 prevention and management
 alkañinization of body fluids 71, 82, 99, 153, 168, 169
 allopurinol 51, 71, 72, 77, 82, 153, 166, 167
 children 82–91
costs 171
 hemodialysis 73, 120, 121
 hydration and forced diuresis 70, 82, 98, 99, 153, 168
Tumor lysis syndrome (TLS) (continued)
prevention and management (continued)
mineral disturbances 168, 169
rasburicase 51, 73–76, 83–91, 99, 167, 168
prognosis 169, 170
risk factors for morbidity and mortality 48–50, 62, 81
therapeutic agents and risks
monoclonal antibodies 52, 53
nucleoside analogs 52
overview 51, 52, 62, 151

Urate crystals
arthritis induction 4
inflammatory response 5
phagocytosis 4, 5
precipitation factors 4
solubility factors 3, 4
underexcretion of urate 8, 9

Urate oxidase
mutations 2
recombinant form for hyperuricemia
management, see Rasburicase
Uricozyme therapy 73, 120, 153, 164, 167

Uric acid
antioxidant activity 155
blood levels 132, 133
ionization 132
nephrolithiasis, see Uric acid stones
nephrotoxicity 117, 118, 139, 140, 150
renal handling
anion transporter 134, 135, 138, 145
drug interference 134, 135
hyperuricosuria 138, 139
hypouricosuria 136, 137
insulin effects 137
lead and gouty nephropathy 137, 138
overview 149, 150
phases 133, 134
urate transporter/channel 135, 136
turnover rate 133

Uric acid stones
incidence 141
pathophysiology 141–143
treatment 143, 144
Uricozyme, see Urate oxidase

Xanthine oxidase (XO)
function 6
inhibition, see Allopurinol