Transjugular Intrahepatic Portosystemic Shunt

Andreas Ochs
Department of Internal Medicine, Evangelisches Diakonie Krankenhaus, Teaching Hospital of the Medical Faculty, University of Freiburg, Freiburg, Germany

Key Words
Portal hypertension · Variceal bleeding · Ascites · Hepatorenal syndrome · TIPS · Budd-Chiari syndrome · Hepatic hydrothorax · Endoscopic band ligation · Cirrhosis · Hepatic encephalopathy

Abstract
The transjugular intrahepatic portosystemic shunt (TIPS) is an interventional treatment resulting in decompression of the portal system by creation of a side-to-side portosystemic anastomosis. Since its introduction 16 years ago, more than 1,000 publications have appeared demonstrating broad acceptance and increasing clinical use. This review summarizes our present knowledge about technical aspects and complications, follow-up of patients and indications. A technical success rate near 100% and a low occurrence of complications clearly depend on the skills of the operator. The follow-up of the TIPS patient has to assess shunt patency, liver function, hepatic encephalopathy and the possible development of hepatocellular carcinoma. Shunt patency can best be monitored by duplex sonography and can avoid routine radiological revision. Short-term patency may be improved by anticoagulation, while such a treatment does not influence long-term patency. Stent grafts covered with expanded polytetrafluoroethylene show promising long-term patency comparable with that of surgical shunts. With respect to the indications of TIPS, much is known about treatment of variceal bleeding and refractory ascites. The thirteen randomized studies that are available to date show that survival is comparable in patients receiving TIPS or endoscopic treatment for acute or recurrent variceal bleeding. Another group comprises patients with refractory ascites and related complications, such as hepatorenal syndrome and hepatic hydrothorax. It has been demonstrated that TIPS improves these complications. Five randomized studies comparing TIPS with paracentesis and one study comparing TIPS with the peritoneo-venous shunt showed good response of ascites but controversial results on survival. In addition, TIPS has been successfully applied to patients with Budd-Chiari syndrome, portal vein thrombosis, before liver transplantation, and for the treatment of ectopic variceal bleeding.

Introduction
Transjugular intrahepatic portosystemic shunts (TIPS) are used to create a low-resistance channel between the hepatic vein and the intrahepatic portion of the portal vein by deployment of an expandable metal stent. After animal experiments in the 70s and 80s, the first TIPS was inserted in a patient in Freiburg, Germany in 1988 [1–5]. Table 1 shows indications for which TIPS has been used in the last 16 years. This paper evaluates these indications. Other articles in this issue address the pathophysiology and treatment options for these conditions.
Transjugular Intrahepatic Portosystemic Shunt

Table 1. Reported indications for TIPS

<table>
<thead>
<tr>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variceal bleeding</td>
</tr>
<tr>
<td>- Acute variceal bleeding</td>
</tr>
<tr>
<td>- Prevention of rebleeding</td>
</tr>
<tr>
<td>- Treatment of ectopic varices</td>
</tr>
<tr>
<td>- Primary prophylaxis of variceal bleeding</td>
</tr>
<tr>
<td>- Portal hypertension</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascites</td>
</tr>
<tr>
<td>- Refractory ascites</td>
</tr>
<tr>
<td>- Hepatorenal syndrome types 1 and 2</td>
</tr>
<tr>
<td>- Hepatic hydrothorax</td>
</tr>
<tr>
<td>- Closure of umbilical hernia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous</td>
</tr>
<tr>
<td>- Budd-Chiari syndrome</td>
</tr>
<tr>
<td>- Veno-occlusive disease</td>
</tr>
<tr>
<td>- Non-cavernomatous portal vein thrombosis</td>
</tr>
<tr>
<td>- Portal hypertension in malignancies</td>
</tr>
<tr>
<td>- Treatment of portal hypertension prior to gastrointestinal surgery</td>
</tr>
<tr>
<td>- Prior to orthotopic liver transplantation</td>
</tr>
</tbody>
</table>

Table 2. Acute and chronic complications after implantation of a TIPS

<table>
<thead>
<tr>
<th>Technical complications</th>
<th>Frequency %</th>
<th>Significance</th>
<th>Treatment/prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedural 30-day mortality</td>
<td><1–6</td>
<td>significant</td>
<td>experienced team</td>
</tr>
<tr>
<td>Pneumothorax</td>
<td><1</td>
<td>minor</td>
<td>thorax drainage</td>
</tr>
<tr>
<td>Inadvertent arterial puncture with neck hematoma</td>
<td><0–1</td>
<td>minor</td>
<td>compression/rarely ventilation/sonographic guidance</td>
</tr>
<tr>
<td>Heart arrhythmias</td>
<td><5?</td>
<td>usually none</td>
<td>guidewire removal</td>
</tr>
<tr>
<td>Hepatic capsule perforation</td>
<td><?</td>
<td>potentially lethal</td>
<td>embolization of puncture tract/sonographic guidance</td>
</tr>
<tr>
<td>Bile duct or gallbladder</td>
<td><10</td>
<td>may cause shunt</td>
<td>covered stents, cholecystectomy</td>
</tr>
<tr>
<td>Portal vein wall injury</td>
<td><1</td>
<td>thrombus formation</td>
<td>stenting of injured region</td>
</tr>
<tr>
<td>Extra-hepatic portal vein laceration</td>
<td><1</td>
<td>lethal</td>
<td>covered stents/avoid central puncture site</td>
</tr>
<tr>
<td>Stent dislodgment</td>
<td><1</td>
<td>minor</td>
<td>endovascular removal</td>
</tr>
<tr>
<td>Radiation injury</td>
<td><?</td>
<td>minor</td>
<td>experienced team</td>
</tr>
<tr>
<td>Contrast dye: allergic reaction</td>
<td><10–20</td>
<td>significant</td>
<td>i.v. corticosteroids, antihistaminics</td>
</tr>
<tr>
<td>Contrast dye: renal impairment</td>
<td><10?</td>
<td>significant</td>
<td>CO₂ angiography</td>
</tr>
<tr>
<td>Septic complications</td>
<td><10?</td>
<td>significant</td>
<td>antibiotics/avoid TIPS in acute infection</td>
</tr>
<tr>
<td>Heart failure – infarction</td>
<td><10</td>
<td>significant</td>
<td>medical treatment/pre-TIPS echocardiography, patient selection</td>
</tr>
<tr>
<td>Haemolysis</td>
<td><10</td>
<td>minor</td>
<td>often self limited/covered stents?</td>
</tr>
<tr>
<td>Acute liver failure</td>
<td><?</td>
<td>significant</td>
<td>OLT, artificial liver support/careful patient selection</td>
</tr>
<tr>
<td>Hepatic encephalopathy</td>
<td>–70%</td>
<td>significant</td>
<td>medical treatment, shunt reduction or occlusion, OLT/small diameter shunts, careful patient selection, embolization of collaterals without shunt</td>
</tr>
<tr>
<td>Shunt occlusion or stenosis</td>
<td>–90%</td>
<td>significant</td>
<td>anticoagulation in case of thrombotic complications/covered stents (stent grafts)</td>
</tr>
</tbody>
</table>

TIPS function like side-to-side portocaval shunts, but their placement does not require anesthesia and major surgery. After puncture of the (right) jugular vein, a catheter is placed into the right or middle hepatic vein. A needle is placed into the (right) portal branch of the portal vein under fluoroscopic and sonographic guidance. This is the most demanding step and in approximately 10% of cases a backward direction of puncture is needed. Table 2 shows acute and long-term complications and their treatment and prevention [6–9]. In experienced hands, the technical success rate approaches 100% and procedural mortality amounts to 1%. The creation of TIPS has considerable consequences on hepatic and systemic perfusion. Depending on the diameter of the shunt, portal vein flow is partially or completely diverted from the liver [10]. Hepatic perfusion depends on the arterial buffer reserve. This reserve is negatively correlated with the Child-Pugh score and may explain the high rate of mortality in advanced liver disease [11, 12].
hepatic perfusion can be evaluated invasively [11] or with cine MRT imaging [13]. Systemic, cardiopulmonary and renal hemodynamics are also influenced by the TIPS procedure. Cardiac output, mean pulmonary arterial pressure and pulmonary capillary wedged pressure increase after opening of the shunt, while systemic vascular resistance decreases. These changes are temporary [14, 15]. With time, renal perfusion is enhanced, suggesting the existence of a hepatorenal reflex in humans [16, 17]. In patients with refractory ascites, TIPS reduces the activity of the renin-aldosterone-angiotensin system and restores sodium handling [18–20]. Hepatic encephalopathy (HE) is a major complication of all portocaval shunts and occurs in up to 70% of cases [6]. The incidence correlates with the shunt diameter and liver function. Other risk factors are older age, alcohol abuse, pre-TIPS HE and the requirement of mechanical ventilation [21, 22]. Proton magnetic resonance spectroscopy can monitor changes in brain metabolism after TIPS [23]; a small diameter shunt has to be considered for patients with a high risk for HE. Debilitating HE may require shunt reduction, occlusion, or orthotopic liver transplantation (OLT) [24–28]. Similarly, hepatic function may deteriorate after TIPS. Several scoring systems exist to predict poor outcome after the procedure. Newer models include renal function, which proved to be an important determinant in patients with refractory ascites [29–33].

Shunt insufficiency or occlusion may occur at any time during follow-up, thus a suitable monitoring of shunt function is mandatory. Color-coded Doppler sonography can diagnose clinically relevant shunt malfunction, if several parameters are investigated (fig. 1) [34–39]. Shunt revision is performed on clinical needs, thus reappearance of varices or ascites. Early shunt occlusion is mainly

Fig. 1. Schematic representation of TIPS and important parameters in sonographic follow-up.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pre-TIPS</th>
<th>Normal</th>
<th>Malfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Main portal vein flow and direction</td>
<td>Vmax <20 cm/s</td>
<td>Vmax >30 cm/s, hepatopetal</td>
<td><50% 'gain' directly after TIPS</td>
</tr>
<tr>
<td>2 Flow and direction of intrahepatic portal branches</td>
<td>Antegrade or retrograde (<20%)</td>
<td>Retrograde (80%) or stagnant</td>
<td>Conversion from retrograde to antegrade</td>
</tr>
<tr>
<td>3 Vmax within the shunt</td>
<td>n.a.</td>
<td>>60 cm/s <220 cm/s <250 cm/s*</td>
<td>No flow, <50 cm/s</td>
</tr>
</tbody>
</table>

*Sometimes hard to detect with covered stents immediately after insertion.

Vmax = maximum flow velocity.
a result of thrombosis, which can be avoided by anticoagulation. Trapidil and ticlopidine with initial heparin reduced intimal proliferation [40]. Late shunt malfunction occurs in up to 80% of cases during follow-up. Recently, the use of expanded polytetrafluoroethylene (ePTFE)-covered stents resulted in a primary patency rate of 84% at 1 year by Kaplan-Meier analysis [41–45]. Broad application is currently hampered by high costs.

Bleeding of Collaterals

Variceal bleeding from esophageal, gastric or ectopic collaterals is a major cause of mortality in liver cirrhosis. Therapeutic options include medical [46–48] (vasoconstrictive/vasoactive drugs) and endoscopic (sclerotherapy/ligation) treatments [46, 49, 50]. TIPS has been used for ongoing variceal bleeding, for the prevention of rebleeding and for the treatment of gastric, fundal and ectopic varices. Medical and endoscopic treatments are covered extensively in this issue. Briefly, a recent meta-analysis evaluated 13 studies on patients with ongoing bleeding. Ligation appeared to be the most effective treatment; it was significantly more successful than vasoconstrictive treatment (vasopressin/terlipressin) or vasoactive treatment (somatostatin/octreotide) treatment, but was not statistically superior to sclerotherapy [51]. To prevent rebleeding, β-blockers with and without combination therapy have been used. Sclerotherapy and endoscopic band ligation reduce the risk of rebleeding but have no influence on survival [52–54].

Acute Variceal Bleeding

Several studies have addressed the role of TIPS as a rescue treatment after sclerotherapy failure [55–62]. TIPS stopped active bleeding in 90–100% of cases. Early rebleeding occurred in 16–30% of the patients and the early mortality amounted to 17–60%. Sepsis, requirement of mechanical ventilation after aspiration and renal failure are predictors of poor survival. Thus, patients in this group should not be accepted for salvage TIPS.

Prevention of Recurrent Bleeding

Uncontrolled studies [7, 63] and 13 randomized studies demonstrated that TIPS treatment reduces rebleeding from gastroesophageal varices. A recent meta-analysis [64] compared the effects of TIPS creation with those of endoscopic treatment with or without propranolol administration (i.e., conventional treatment) on recurrent bleeding, encephalopathy, and mortality in 948 patients. The advantage of TIPS was a significant reduction in rebleeding (odds ratio 3.28; 95% CI 2.28–4.72). By contrast, the risk for HE was in favor of endoscopic treatment (odds ratio 0.48; 95% CI 0.34–0.67). Mortality was unchanged. Another randomized study compared TIPS with drug therapy in the prevention of rebleeding in 91 patients. Rebleeding occurred in 13% of TIPS-treated patients and in 39% of drug-treated patients. HE was more frequent in the TIPS group (38 vs. 14%), the 2-year survival was identical (72%) [65]. Therefore, TIPS creation may not be the best first-choice therapy for prevention of recurrent variceal bleeding.

Ectopic Bleeding Sites

Few studies and case reports used TIPS for the treatment of ectopic bleeding sources. Ectopic varices may be best defined as large venous collaterals occurring anywhere in the abdomen except in the cardioesophageal region. They account for up to 5% of all variceal bleeding [66]. One study compared TIPS and transcatheter sclerotherapy in the treatment of gastric varices. Transcatheter sclerotherapy provided better bleeding control than TIPS and was associated with a higher survival rate [67]. No difference was found between the pressures at which gastric varices and esophageal varices bled and TIPS was equally effective in the treatment of both esophageal and gastric hemorrhage [68]. This was true as well in an emergency situation [60]. Medical treatment with β-blockers and nitrates is ineffective [69]. TIPS was effective in the treatment of portal hypertensive gastropathy but not in gastric vascular ectasia, suggesting that portal hypertensive gastropathy and gastric vascular ectasia are different lesions [70]. Bleeding from duodenal, colonic, and rectal varices has been treated with and without failure of endoscopic treatment [71, 72]. Since randomized studies are lacking and are hard to perform, an algorithmic team approach is suggested considering patients’ characteristics [66].

Ascites and Related Complications

Ascites is a common complication of cirrhosis and its development carries a significant worsening of the prognosis. Recently, the International Ascites Club has developed guidelines for the treatment of cirrhotic ascites. As extensively covered in this issue, treatment of mild to moderate ascites should be managed by salt restriction and diuretics. Gross ascites should be treated by therapeutic paracentesis followed by colloid volume expansion.
and diuretics [73–75]. Refractory ascites (RA) has been defined by the International Ascites Club as well [76]. To date, large volume paracentesis, the peritoneovenous shunt (PVS) and TIPS are used for its treatment. Surgical shunts have been abandoned for the high rate of HE and liver failure [77]. Eleven nonrandomized studies suggested that TIPS is an effective treatment for RA with a response rate of 50–90%. Prevalence of HE amounted to 30%. One-year survival varied between 30 and 75% [20, 78–80]. Mobilization of ascites after TIPS may occur early or within months and is usually accompanied by improved sodium handling [81, 82]. In successful cases, nutritional status improves, possibly due to intestinal decompression and reduced protein loss and insulin resistance [20, 83–86]. Five randomized studies comparing TIPS with large volume paracentesis have been published so far (table 3) [87–91]. Overall, TIPS improved ascites in 60–83% as compared to paracentesis in 0–20%. The incidence of HE was higher in the TIPS group (23–77%) as compared to the paracentesis group (0–66%). Survival was identical in 2 studies [89, 90], in favor of paracentesis in 1 study [87]. Two studies demonstrated improved survival after TIPS [88, 91]. Estimated costs per subjects were USD 19,813 (TIPS) and USD 9,765 (paracentesis) [89]. One study compared TIPS and PVS (table 3) [92]. Both treatments controlled ascites, but TIPS was superior in the long term. Survival was identical. Irreversible shunt occlusion occurred in 19% of patients after TIPS and in 38% of patients after PVS.

Hepatic hydrothorax (HH) is a rare but severe complication of cirrhosis. Fluid accumulates in the thoracic cavity and patients have only mild or moderate ascites. Several studies showed that TIPS improves HH in 70% of cases. The 1-year survival is comparable to that of patients with RA [93–99].

Functional renal failure is another severe complication in patients with cirrhosis. Rapidly progressive deterioration of renal function has been defined as type 1 hepatorenal syndrome (HRS) with a 1-year survival of only 10%. In type 2 HRS, renal function is chronically impaired and survival is comparable with that of RA [76]. In patients with preserved liver function, TIPS is a therapeutic option, but randomized data are lacking [20, 100–103].

In conclusion, refractory ascites should be treated with large volume paracentesis followed by colloid substitution. OLT should be considered early. TIPS is recommended if the frequency of paracentesis exceeds 2–3 per month. Additional complications such as umbilical hernia, HH or type 2 HRS favor TIPS, as long as liver function is preserved (e.g. bilirubin <3.5 mg/dl, no overt HE).

Rare Indications

Budd-Chiari syndrome is the result of hepatic vein thrombosis due to various thrombogenic conditions. Budd-Chiari syndrome leads to severe alterations in the liver microcirculation, which can be reversed by TIPS (fig. 2). Patients present with fulminant, acute or chronic symptoms of liver failure [104]. Medical treatment, surgical shunts and OLT have been used as treatment. TIPS has the advantage that the shunt exits into the right atrium. Thus, compression of the inferior caval vein has no influence on shunt function. After early case reports [105, 106], larger series have been published [107–111]. These studies show excellent results on survival and control of symptoms. Early and late shunt malfunction may be reduced by the use of ePTFE stent grafts [112].

Table 3. Randomized studies comparing TIPS and paracentesis (Para) or PVS

<table>
<thead>
<tr>
<th></th>
<th>Lebrec et al. [87] (n = 25)</th>
<th>Rössle et al. [88] (n = 60)</th>
<th>Gines et al. [89] (n = 70)</th>
<th>Salerno et al. [91] (n = 66)</th>
<th>Sanyal et al. [90] (n = 109)</th>
<th>Rosemurgy et al. [92] (n = 32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response, %</td>
<td>TIPS 83 0</td>
<td>TIPS 79 24</td>
<td>TIPS 3.6<sup>1</sup> 11.7<sup>1</sup></td>
<td>TIPS 38 61 11.7<sup>1</sup></td>
<td>TIPS 58 16 11.7<sup>1</sup></td>
<td>TIPS 58 16 11.7<sup>1</sup></td>
</tr>
<tr>
<td>HE</td>
<td>23 0</td>
<td>58 48</td>
<td>77 66</td>
<td>61 39</td>
<td>38 21</td>
<td>38 21</td>
</tr>
<tr>
<td>Survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 year</td>
<td>29 70</td>
<td>69 52</td>
<td>41 35</td>
<td>77 52</td>
<td>70 70</td>
<td>63 56</td>
</tr>
<tr>
<td>2 years</td>
<td>29 56</td>
<td>58 32</td>
<td>26 30</td>
<td>59 29</td>
<td>70 70</td>
<td>50 38</td>
</tr>
</tbody>
</table>

¹ Number of paracenteses within 1 year after treatment; HE = hepatic encephalopathy.
Veno-occlusive disease is a severe complication of bone marrow transplantation. Since survival depends on the presence or absence of multi-organ failure, the outcome of TIPS was disappointing [113, 114].

TIPS has been used for the treatment of non-cavernomatous portal vein thrombosis. In about 50%, restoration of portal blood flow is possible [115–117]. Patients with hepato-pulmonary syndrome [118–120] and patients with malignant portal hypertension [121] have been successfully treated with TIPS.

TIPS does not improve early graft function after OLT, nor does it reduce blood transfusion requirements during OLT [122–124]. ePTFE-covered endoprostheses do not interfere with a later OLT [124].

In conclusion, TIPS can be regarded as the rescue treatment when medical or endoscopic treatment fails in bleeders. Large volume paracentesis is the first-line treatment for patients with RA, followed by TIPS when frequent paracenteses are needed. Despite the lack of randomized studies, TIPS seems to be the treatment of choice in patients with Budd-Chiari syndrome.

References

Transjugular Intrahepatic Portosystemic Shunt

Dig Dis 2005;23:56–64

68 Rees CJ, Nylander DL, Thompson NP, Rose JD, Record CO, Hudson M: Do gastric and oesophageal varices bleed at different portal pressures and is TIPS an effective treatment? Liver 2000;20:252–256.

81 Rees CJ, Nylander DL, Thompson NP, Rose JD, Record CO, Hudson M: Do gastric and oesophageal varices bleed at different portal pressures and is TIPS an effective treatment? Liver 2000;20:252–256.

