Regulation of Neuroinflammation by Herbal Medicine and Its Implications for Neurodegenerative Diseases
A Focus on Traditional Medicines and Flavonoids

Kyoungho Suk
Department of Pharmacology, Pain and Neural Injury Research Center, School of Medicine, Kyungpook National University, Daegu, Korea

Introduction
In neuroinflammation, microglia and astrocytes play a critical role. Microglial cells are ubiquitously distributed in the central nervous system (CNS) and comprise up to 20% of the total glial cell population in brain [1, 2]. Although the ontogeny of microglial cells has long been debated, recent works using monoclonal antibodies specific for microglial cells indicated that these cells are closely related to monocytes and macrophages [3]. As the primary immune effector cells in the CNS, microglial cells migrate to the site of tissue injury or inflammation, where they respond to invading pathogens or other inflammatory signals [4, 5]. Like monocytes/macrophages, they also secrete inflammatory cytokines and toxic mediators which may amplify the neuroinflammatory responses [6, 7]. Astrocytes form an intimately connected network with neurons in the CNS, and they provide mechanical and metabolic support for neurons [8]. The critical role of these cells in ion buffering and clearance of neurotransmitters is also well established [9, 10]. Upon inflammatory stimulation, astrocytes proliferate and produce diverse intercellular mediators such as nitric oxide (NO) and tumor necrosis factor (TNF)-α [11–13]. There is growing evidence that inflammatory mediators produced by activated astrocytes may be involved in the pathogenesis of various neurodegenerative diseases [10, 14]. Thus,
the activation of astrocytes and ensuing production of toxic inflammatory mediators may need to be tightly regulated. Activation of inflammatory cells in CNS (microglia or astrocytes) may be intended to protect neurons at first. More frequently, however, activation of these neuroglial cells and inflammatory products derived from them have been implicated in neuronal destruction commonly observed in various neurodegenerative diseases [7]. Thus, our understanding of pathogenesis of neurodegenerative diseases may be enhanced by elucidation of the molecular mechanism underlying the regulation of neuroglial activation. Among many endogenous or exogenous factors that regulate neuroglial activation and resulting neuroinflammation [15], herbal medicine has recently drawn much attention due to its potent inhibitory effects on inflammatory responses and neuroprotective activity [16, 17]. A central role of microglia and astrocytes in neuroinflammation (and potentially neurodegeneration) and a regulatory effect of herbal medicine on the inflammatory activation of the neuroglia will be discussed in this review.

Inflammation and Tissue Injury

Injury, trauma or infection induce a series of complex and interconnected reaction sequences, initiated at the site of tissue damage [18, 19]. This sequence of reaction serves to contain and destroy the infection or damaging agents, and to prevent continued tissue damage and initiate repair processes to restore normal function. This rapid response is known as acute inflammation [20]. The toxic reactions, which are employed to destroy infectious organisms or protect host, also paradoxically have the capacity to injure host tissues. If these toxic responses are not tightly regulated, tissue injury may predominate over tissue protection and repair, thereby leading to inflammatory diseases (fig. 1). The characteristics of the inflammatory response include localized changes within the damaged tissue such as the followings: (1) the release of preformed inflammatory mediators from intracellular stores; (2) the initiation of reaction cascade through the activation of soluble plasma components; (3) the new synthesis of inflammatory mediators such as eicosanoids and cytokines, and (4) resolution of the inflammatory response. The acute inflammatory response is beneficial to the organism in that it helps to deal with potentially dangerous microorganisms. However, inflammation does cause some degree of damage to surrounding tissues. Reactive oxygen species (ROS), reactive nitrogen species (RNS), prostanoids, leukotrienes, and hydrolytic enzymes produced by neutrophils, macrophages, and monocytes may all play a role in mediating inflammation. Persistence of infection or defective resolution of inflammatory reaction results in chronic inflammation where severe tissue damage may occur. Although inflammation is normally a self-
limiting event and its benefit outweighs the minor tissue damage it causes, abnormal activation of the immune or inflammatory system has the potential to provoke a devastating response [21]. In gout, for example, elevated concentration of uric acid in the blood leads to precipitation of sodium urate crystal within joints which triggers inflammation by a variety of mechanisms. Another striking consequence of abnormal inflammatory response is autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, autoimmune vasculitis, dermatomyositis, chronic autoimmune gastritis, and myasthenia gravis. Tissue-damaging chronic inflammatory response may also occur in CNS, where main inflammatory cells are microglia and astrocytes instead of monocytes/macrophages or neutrophils in periphery [22–24].

Neurogia (Microglia, Astrocytes), Neuroinflammation, and Neurodegeneration

Microglia and astrocytes are essential for ensuring proper functioning of neurons. They are quick to intervene when neurons become injured or stressed. As they are sentinels of neuron well-being, pathological impairment of microglia or astrocytes could have devastating consequences for brain function. Nevertheless, there is still a debate over neuroprotective and neurotoxic functions of these neuroglial cells [22, 25] (fig. 2). It is assumed that neuroglial activation is largely determined by neuronal signals. Acute injury causes neurons to generate signals that inform neuroglia about the neuronal status. Depending on how severe a degree of neuronal injury, neuroglia will either nurse the injured neurons into regeneration or kill them if they are not viable. These types of neuroglial responses are considered to represent normal physiological and neuroprotective responses. In contrast, some processes that are chronic in nature persistently activate neuroglia eventually causing a failure in their physiological ability to maintain homeostasis. This could have detrimental consequences and may lead to bystander damage due to neuroglial dysfunction. In this scenario, neuroglia exert neurotoxic effects through the secretion of a variety of toxic inflammatory mediators. Thus, although activation of neuroglial cells may be intended to protect neurons, inflammatory products derived from activated neuroglia may also be implicated in neuronal injury, potentially leading to neurodegenerative diseases [7]. These deleterious effects of neuroglial activation may be exacerbated by the failure of auto-regulatory mechanisms of neuroglia. Recently, activated macrophages, whose functions are closely related to microglia, have been shown to undergo apoptosis [26–28]. It has been suggested that the apoptosis of activated macrophages is one mechanism whereby an organism may regulate immune and inflammatory responses involving macrophages [28]. It has been recently demonstrated that a similar regulatory mechanism exists for microglial cells [29, 30] and astrocytes [31] as well. Microglial cells and astrocytes underwent apoptosis upon inflammatory activation in a manner similar to activation-induced cell death (AICD) of lymphocytes [30, 31]. AICD is an active process. T and B lymphocytes undergo AICD as an auto-regulatory mechanism for the body to remove unwanted activated cells after making appropriate use of them [32,
Compared to lymphocytes, neuroglial cells in CNS are not well studied in this respect. Now, as results in this and other laboratories indicated that neuroglial cells might be under the control of a similar regulatory mechanism [29–31, 34–37], further investigation is warranted to better understand the molecular mechanism(s) of neuroglial AICD and its physiological significance. Nevertheless, it has been shown that, in contrast to AICD of T lymphocytes where Fas-FasL interaction plays a central role, neither Fas-FasL interaction nor TNF-α is important in AICD of microglial cells [30]. Instead, NO produced by activated neuroglial cells themselves was the major cytotoxic mediator [30, 31]. However, the presence of NO-independent cytotoxic mechanism has been also suggested [38, 39].

Elimination of activated neuroglial cells by apoptosis could be an important mechanism whereby undesirable effects of long-term neuroglial activation can be minimized. Inflammatory mediators that are produced by activated neuroglia in CNS may have harmful effects on neurons or other neuroglial cells that they originally intended to protect [6, 7]. Thus, in various neurodegenerative diseases involving chronic neuroglial activation, neuroglial functions seem to play a more significant role in mediating diseases than in the protection of neurons. According to the model of activation-induced apoptosis of neuroglial cells, inflammatory signals that activate neuroglia may also initiate internal death program [38, 40]. One interesting question that can be raised then is how neuroglial cells could survive the inflammatory activation. It should be kept in mind that neuroglial cells in vivo are heterogeneous and interact with other neuroglial cells as well as neurons. There is also growing evidence that activated neuroglial cells proliferate in vivo as one way of replenishment [1]. Thus, not all neuroglial cells may respond to the inflammatory signals in the same fashion. Upon inflammatory activation, individual neuroglial cells in heterogeneous population may either undergo AICD or return to the resting state via other regulatory mechanisms depending on the specific microenvironment under which they react to the signals. Although many of activated neuroglial cells may be eliminated, some would survive to be deactivated. Whatever the mechanism of down-regulation is, this may be an excellent auto-regulatory system for the neuroglial activation. One can easily imagine pathological situations where this type of auto-regulatory mechanism goes wrong. Failure of the auto-regulation of ‘over-activated’ neuroglial cells may result in pathological destruction of bystander cells (neurons and other neuroglial cells) exposed to toxic mediators produced by activated neuroglia. Recently, up-regulated Bcl-xL expression has been detected in reactive microglia of patients with neurodegenerative diseases [41]. Authors proposed that high level of Bcl-xL protein might render microglia more resistant to cytotoxic environment such as areas of neurodegeneration. Expression of anti-apoptotic Bcl-2 protein has been also associated with aged brain and neurodegenerative diseases [42]. An importance of the physiological regulation of neuroglial activation by AICD is supported by these previous reports.

Recent studies focused on the possible role of neuroglia in causing neurodegeneration. Convincing evidence from in vitro studies pointed to the neurotoxic role of neuroglia during traumatic or ischemic brain injury [4] and AD pathogenesis [43]. Supernatants obtained from neuroglial cell cultures kill cultured neurons. Such supernatants contain various neurotoxic substances which include glutamate, NO, ROS, inflammatory cytokines, as well as yet unidentified neurotoxins [44, 45]. Production of these neurotoxins by neuroglia is enhanced by treatment with inflammatory stimuli such as lipopolysaccharide (LPS) and/or interferon (IFN)-γ. Paradoxically, other investigators have shown that neuroglia-conditioned media promote neuronal survival [46]. Thus, the balance of neurotoxic and neurotrophic effects of neuroglia appears to depend on the nature of the experimental paradigm used. In traumatic brain injury where neuronal regeneration may occur, neuroglial secretory products might help to promote regenerative efforts by injured, but surviving, neurons. However, a situation may be different in neurodegenerative diseases such as Alzheimer’s disease (AD) or human immunodeficiency virus (HIV)-associated dementia, where functionally compromised neuroglia may produce neurotoxins, thereby resulting in neuronal damage. There is considerable evidence from postmortem examinations of AD brains that auto-destructive mechanisms are at work, which could in part be responsible for the neurodegeneration [47, 48].

Neuroglia as a Target of Pharmacological Intervention

Considering neuroglial activation as a common feature in many neuropathologies, and keeping in mind that overactivation of neuroglia can have neurotoxic outcomes, it is reasonable to assume that manipulation of neuroglial activation could serve future clinical approaches [49]. Although treatment of the primary events...
in neurodegenerative diseases would still be the preferred intervention, this may not always be possible. Brain or spinal cord injury is a sudden event that is followed by secondary cascades of destruction. Invading macrophages and intrinsic neuroglia in brain may carry a significant portion of these cascades of reaction. Now, there is growing evidence that toxic mediators produced by activated neuroglial cells might be involved in the pathogenesis of various neurodegenerative diseases such as Parkinson’s disease (PD), AD, and HIV-associated dementia [6, 7, 47]. Thus, it is of great interest to find a means to modulate neuroglial activation and CNS inflammatory responses for the therapeutic interventions against these neurodegenerative diseases. Based on understanding of intracellular signaling pathways that are specific for activated neuroglia, a temporary inhibition of signaling molecules or protein-protein interaction associated with signaling pathways would probably allow for a rather selective effect on activated neuroglia, while respective functions in other cell types are unaffected. Elucidation of the intracellular key events that drive neuroglial activation could provide new routes for drug development [49]. Alternatively, potentially harmful products of neuroglia could be neutralized to limit undesired consequences for CNS cells and tissues. Whether it is a direct inhibition of neuroglial activation or indirect suppression of neuroglia-derived toxic inflammatory mediators, a better understanding of neuroglial biology and selective manipulation of neuroglial activation processes represent a promising goal for developing novel neuroprotective strategies.

Medical Use of Herbs

Herbs are generally defined as any form of plants or plant products, including leaves, stems, roots, and seeds [50, 51]. Herbal products may contain a single herb or combinations of several different herbs that are thought to have complementary effects. Herbal products are usually extracts of the plants, which are obtained by boiling or percolating the herbs in water, alcohol, or other organic solvents to release biologically active ingredients of the plants. Herbal products contain complicated mixtures of organic chemicals, which may include fatty acids, sterols, alkaloids, flavonoids, glycosides, saponins, tannins, terpenes and so forth. It is often difficult to determine which component(s) of the herb has biological activity. In addition, the processing of herbs, such as heating or boiling, may alter the pharmacological activity of the organic constituents. Similarly, a host of environmental factors, including soil, altitude, and seasonal variation in weather, may affect the levels of components in any given batch of an herb. Because of these multiple factors that affect concentration of active ingredients in the final herbal product, standardization is inevitable, in which certain unique chemical components of the herbs known as markers are identified and the production process is altered to achieve a consistent level of these markers in every final batch of the herbal product. The ten most commonly used herbs in United States are echinacea, garlic, *Ginkgo biloba*, saw palmetto, ginseng, grape seed extract, green tea, St. John’s wort, bilberry, and aloe [50]. The medical use of herbs in their natural and unprocessed form began when mankind first noticed that certain plants altered particular body functions. Now, much information exists about the historical use and effectiveness of botanical products. Unfortunately, however, the quality of this information is extremely variable. Necessary is evidence-based approach to the pharmacology and clinical efficacy of the herbal medicine.

Herbal Medicine against CNS Disorders

In traditional practices of Chinese medicine, numerous plants have been used to treat stroke and cognitive disorders, including neurodegenerative diseases such as AD [52, 53]. Neurodegenerative diseases and brain injuries resulting from stroke are the major and increasing public health problem in both developed and developing countries worldwide [54]. It is believed that traditional Chinese medicines (TCM) are effective, with few or no side-effects. There are more than 120 traditional medicines in use for the therapy of CNS disorders in Asian countries. Some of their therapeutic effects have been confirmed by recent clinical studies. An ethnopharmacological approach has provided a potentially rich source for drug discovery and development [55]. Many drugs currently available in Western medicine were originally isolated from plants. Although a large number of compounds have been isolated from TCMs, most of these resources have not yet been fully characterized for pharmacological purposes. Some of the TCMs used in stroke therapy include *Ledebouriella divaricata*, *Scutellaria baicalensis*, *Angelica pubescens*, *Morus alba*, *Salvia miltiorrhiza*, *Uncaria rhynchophylla*, and *Ligusticum chuanxiong* [52]. Among these, *S. baicalensis* and *U. rhynchophylla* have been found to confer neuroprotection against transient global ischemia [56, 57]. *S. baicalensis* is one of...
the most widely used herbal medicines against bacterial infections of the respiratory and gastrointestinal tract, and various inflammatory diseases. The herb has antipyretic, antibacterial, and antihypertensive properties. The main components of *S. baicalensis* – baicalin, baicalin, and wogonin – have been previously shown to exert anti-inflammatory effects [58–60]. Based on the use of *S. baicalensis* for the treatment of stroke in traditional oriental medicine, neuroprotective effects of *S. baicalensis* have been evaluated after transient global ischemia using rat 4-vessel occlusion model [56]. Methanol extracts from the dried roots of *S. baicalensis* (0.1–10 mg/kg) administered intraperitoneally significantly protected CA1 neurons against 10 min transient forebrain ischemia as demonstrated by measuring the density of neuronal cells stained with cresyl violet. The neuroprotective effects of *S. baicalensis* observed in vivo was explained in part by its inhibitory effects on microglial TNF-α and NO production as well as protection of nerve growth factor (NGF)-differentiated PC12 cells from hydrogen peroxide toxicity in vitro. *U. rhynchophylla* also exerted neuroprotective effects against transient global ischemia [57]. In traditional Oriental medicine, *U. rhynchophylla* has been used to lower blood pressure and to relieve various neurological symptoms. However, scientific evidence related to its effectiveness or precise modes of action has not been available. Methanol extract of *U. rhynchophylla* administered intraperitoneally (100–1,000 mg/kg) administered intraperitoneally significantly protected hippocampal CA1 neurons following the transient forebrain ischemia. Measurement of neuronal cell density in CA1 region at 7 days after ischemia by Nissl staining revealed more than 70% protection in *U. rhynchophylla*-treated rats compared to saline-treated animals. In *U. rhynchophylla*-treated animals, induction of cyclooxygenase-2 in hippocampus at 24 h after ischemia was significantly inhibited at both mRNA and protein levels. Furthermore, *U. rhynchophylla* extract inhibited TNF-α and NO production in BV-2 mouse microglial cells in vitro in a manner similar to what has been observed with *S. baicalensis* extract. These anti-inflammatory actions of *U. rhynchophylla* extract (and other herbal medicines) may contribute to its neuroprotective effects (fig. 3).

Plant Flavonoids as a Neuroprotector: Inhibition of Neuroinflammation

Flavonoids are a group of low molecular weight polyphenolic compounds of plant origin, many of which alter metabolic processes and have a positive impact on health [66]. They exhibit a variety of biological activities such as anti-inflammatory, anti-oxidant, anti-viral, and anti-tumor actions [67, 68]. Wogonin (5,7-dihydroxy-8-methoxyflavone) is a major flavonoid present in *S. baicalensis*. It has been shown to inhibit the production of inflammatory mediators such as TNF-α, IL-1β, and IL-6 in LPS-stimulated RAW264.7 macrophages [69]. In addition, wogonin has been shown to inhibit the expression of iNOS and COX-2 in LPS-stimulated RAW264.7 macrophages [70]. These actions are thought to be associated with the anti-inflammatory effects of flavonoids [71].
Fig. 4. Neuroprotective effects of wogonin against experimental brain injury. a–f Treatment of experimental animals with wogonin (10 mg/kg i.p., 0 and 90 min right after 10 min ischemia and reperfusion) conferred neuroprotection by markedly reducing the number of damaged pyramidal cells in the CA1 subfield. Representative photomicrographs of cresyl violet-stained hippocampal regions of sham-operated animals (a, d) or animals that had been subjected to 10 min ischemia followed by treatment with either saline (b, e) or 10 mg/kg of wogonin (c, f). Boxed regions in a, b, and c (×40) are shown in d, e, and f (×200), respectively. Scale bar is 100 μm.

The neuroprotective effect of wogonin was dose dependent. Either saline or wogonin (0.5, 1 and 10 mg/kg) was intraperitoneally administered into animals following 10 min ischemia. Seven days later, neuronal cell density in CA1 region was measured by Nissl staining and cell counting. Asterisks indicate statistically significant differences from saline-treated ischemic group (p < 0.05). Sham = Sham-operated animals (n = 7); saline = saline-treated animals following ischemia (n = 7); wogonin = wogonin-treated animals following ischemia (n = 3). h Wogonin inhibited expression of inflammatory mediators following the ischemic brain injury. At 4 days after forebrain ischemia, the expression of iNOS and TNF-α was assessed by RT-PCR analysis of hippocampal tissue followed by Southern blot analysis using sequence-specific oligonucleotide probes. Wogonin (10 mg/kg) markedly reduced the ischemic induction of iNOS and TNF-α. Results are representative of three independent experiments. The numbers indicate a fold induction of the gene expression normalized to GAPDH as determined by densitometric analysis of Southern blot of RT-PCR products.
Table 1. Effect of flavonoid wogonin on the histological changes in hippocampus after kainate injection

<table>
<thead>
<tr>
<th>Experimental animal groups</th>
<th>Histology scores¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saline (n = 3)</td>
<td>0</td>
</tr>
<tr>
<td>Kainate (n = 5)</td>
<td>3.11 ± 0.45²</td>
</tr>
<tr>
<td>Kainate + wogonin, 1 mg/kg (n = 5)</td>
<td>2.67 ± 0.37</td>
</tr>
<tr>
<td>Kainate + wogonin, 10 mg/kg (n = 6)</td>
<td>2.25 ± 0.32²</td>
</tr>
</tbody>
</table>

To examine the neuroprotective effect of wogonin in vivo, excitotoxic neuronal injury was induced by systemic administration of kainate (30 mg/kg i.p.). Injection of kainate induced a severe neuronal cell death in CA1 and CA3 of hippocampus. Pretreatment with wogonin (10 mg/kg i.p., 60 min prior to kainate injection) significantly attenuated the hippocampal cell death both in CA1 and CA3 as determined by histological scoring.

Values represent mean ± SEM.

¹ Damage or loss of hippocampal neurons was assessed by Nissl staining at 2 days after kainate administration with or without wogonin pretreatment. Histological damage was scored as follows: 0 = no damage; 1 = occasional injured neurons in CA1 or CA3; 2 = small area (<10%) with neuronal damage or loss in CA1 or CA3; 3 = greater area (10–50%) with neuronal damage or loss in CA1 or CA3; 4 = extended (>50%) neuronal damage or loss in both CA1 and CA3.

² Statistically significant differences among each other (p < 0.05).

Wogonin and baicalein (5,6,7-trihydroxyflavone) are flavonoids derived from the root of *S. baiicalensis*. These flavonoids have been shown to exert various anti-inflammatory activities in vitro as well as in vivo. Wogonin inhibited LPS-induced production of NO [60, 69] and prostaglandin E₂ [70] in macrophages. Wogonin inhibited monocyte chemotactic protein-1 gene expression in human endothelial cells [71]. It also inhibited TPA-induced cyclooxygenase-2 expression and skin inflammation in mice [72]. Moreover, wogonin showed free radical scavenging and anti-oxidant activities [73–75]. In the CNS, however, little information is available about its effects on glial cells and neurons. Gao et al. [73, 76] demonstrated neuroprotective effects of four flavonoids from *S. baiicalensis*, including wogonin, in cultured human neuroblastoma cells. Recently, it has been demonstrated that wogonin inhibits NO production and inducible NO synthase (iNOS) induction in cultured rat astrocytes [77], suggesting that the flavonoid may act as an anti-inflammatory agent in CNS as well. This was confirmed by a recent study where wogonin has been shown to be neuroprotective against experimental brain injury by inhibiting inflammatory activation of microglia [78]. Wogonin inhibited inflammatory activation of cultured brain microglia by diminishing LPS-induced TNF-α, IL-1β, and NO production. Wogonin inhibited NO production by suppressing iNOS induction and NF-κB activation in microglia. Inhibition of inflammatory activation of microglia by wogonin led to the reduction in microglial cytotoxicity toward co-cultured PC12 cells, supporting a neuroprotective role for wogonin in vitro. The neuroprotective effect of wogonin was further demonstrated in vivo using two experimental brain injury models; transient global ischemia by 4-vessel occlusion (fig. 4) and excitotoxic injury by systemic kainate injection (table 1). In both animal models, wogonin conferred neuroprotection by attenuating the death of hippocampal neurons, and the neuroprotective effect was associated with inhibition of the inflammatory activation of microglia. Hippocampal induction of inflammatory mediators such as iNOS and TNF-α was reduced by wogonin in the global ischemia model (fig. 4), and microglial activation was markedly down-regulated by wogonin in the kainate injection model as judged by microglia-specific isolectin B4 staining. A similar neuroprotective activity has been demonstrated with baicalein in rats [Kim et al., unpublished results] as well as in gerbils [79]. Baicalein attenuated NO production and apoptosis of LPS-activated, but not IFN-γ-activated, BV-2 mouse microglial cells as well as rat primary microglia cultures [80]. The inhibition of NO production by baicalein was due to the suppression of iNOS induction. Moreover, baicalein inhibited LPS-induced NF-κB activity in BV-2 cells without affecting caspase-11 activation, interferon regulatory factor (IRF)-1 induction, or signal transducer and activator of transcription (STAT)-1 phosphorylation. IRF-1 and STAT-1 are central components of IFN-γ signaling [81]. Taken together, flavonoids such as wogonin and baicalein seem to exert their neuroprotective effects by inhibiting microglial activation, which is a critical component of pathogenic inflammatory responses in neurodegenerative diseases. These findings emphasize the importance of herbal medicines and their constituents as an invaluable source for the development of novel neuroprotective drugs. In neurodegenerative diseases, a pathogenic role of uncontrolled microglial activation is widely accepted at present [7]. In search of neuroprotective agents, now it is time to focus on killer cells (microglia and astrocytes) instead of killed cells (neurons); eliminating or at least suppressing killer microglial activation will provide a better chance for neuroprotection compared to just salvaging dying neurons. Identification of a potent neuroprotector from natural source that inhibits the killer cell activity...
will certainly instigate further investigations in the related areas, which will ultimately lead to the successful development of novel neuroprotective drugs based on flavonoids or other constituents of the medicinal herbs.

Other Components of Herbal Medicine and Other Mechanisms of Neuroprotection

As mentioned above, herbal extracts contain complicated mixtures of organic chemicals, including fatty acids, sterols, alkaloids, flavonoids, glycosides, saponins, tannins, and terpenes. Flavonoids are not the only component possessing neuroprotective effects [82]. Anti-dementia effects of galanthamine, an alkaloid widely occurring in *Amaryllidaceous* plants, have been well demonstrated in a variety of animal models [83–85]. Acute and chronic treatment with galanthamine significantly improved the impairment of learning, short-term and spatial memory. The \(\beta \)-hydroxybenzyl alcohol and gastrodin are the active ingredients isolated from *Gastrodia elata* roots, and they have been shown to possess anti-amnesic activities in experimental animals [86–88]. Huperzine A, a sesquiterpene alkaloid purified from the Chinese medicinal herb *Huperia serrata*, exhibits a broad range of neuroprotective actions [89]. Huperzine A ameliorated learning and memory impairments and improved spatial working memory. Ginsenosides (ginseng saponins), as the major active constituents of ginseng, are another example of herb components with potent neuroprotective effects [90–92]. The cellular and molecular mechanisms underlying the neuroprotective effects of various components of herbal extracts may be as diverse as the plants which these components were isolated from. Although this review has been focused on the role of neuroinflammation in neurodegenerative diseases and its inhibition by neuroprotective herbs, the antioxidant activity of herbal extracts is certainly another important aspect of neuroprotection [93, 94]. A variety of herbal extracts and their components have been demonstrated to exert neuroprotective effects associated with antioxidant activities, either by directly stimulating antioxidant response genes or by potentiating the bodies’ own natural antioxidant defense systems. Modulation of neuroinflammation and the antioxidant activity are not mutually exclusive mechanisms of action. ROS and RNS can be generated during inflammatory responses. These compounds function as important signal-transducing messengers or as an effector to kill invading microorganisms. High concentrations of ROS or RNS, however, may cause tissue injury, which in turn leads to further inflammation. The beneficial versus detrimental effect of ROS and RNS is tightly regulated by antioxidant defense systems, whereas neuroinflammation is controlled by various endogenous mediators as well as by auto-regulatory apoptosis of inflammatory cells [30, 31]. Inflammation and generation of ROS or RNS seem to be interconnected physiological responses, which may also have pathological implications if left uncontrolled. This is supported by the findings that many herbal extracts and their components with neuroprotective activities exert both anti-inflammatory and antioxidant effects at the same time [56, 65, 95, 96].

Conclusions

Activation of microglia and astrocytes plays a pivotal role in the initiation and progression of various neurodegenerative diseases. Inhibition of the neuroglial activation may provide an effective therapeutic intervention that alleviates the progression of the neurodegenerative diseases. Herbal medicine, especially their flavonoid constituents, may be a useful candidate for such a therapeutic approach. Continual investigation of the mechanisms underlying neuroglial activation, regulation of neuroinflammation, modulatory role of herbal medicine in these processes would not only lead to the discovery of novel neuroprotective agents based on medicinal herbs, but also help to understand complex pathophysiology of neurodegenerative diseases.

Acknowledgement

This work was supported by the Korea Research Foundation Grant (KRF-2004-000-E00058). This work was also supported by the Neurobiology Research Program from the Korea Ministry of Science and Technology (2004-01323).
References

62 Bastianetto S, Ramassamy C, Dore S, Christen
65 Oyama Y, Chikahisa L, Ueha T, Kanemaru K,
67 Middleton E, Jr., Kandaswami C, Theoharides
61 Gertz HJ, Kiefer M: Review about
60 Wakabayashi I: Inhibitory effects of baicalein
55 Harvey AL: Medicines from nature: Are natu-
58 Kubo M, Matsuda H, Tanaka M, Kimura Y,
53 Howes MJ, Houghton PJ: Plants used in Chi-
51 Noda K: Ginkgo biloba extract protects brain
52 Shieh DE, Liu LT, Lin CC: Antioxidant and
48 Kim H, Kim YS, Kim SY, Suk K: The plant
47 Kim H, Kim SY, Kim YH, Kim SY, Kim HP: Effects of naturally occurring flavonoids
45 Howes MJ, Houghton PJ: Plants used in Chi-
44 Geor GI: Overview of dietary flavonoids:
43 Middleton E Jr, Kandaswami C: Effects of fla-
42 Voelkel NF, Edwards P, Gershon ES: The role
41 Middleton E Jr, Kandaswami C: Effects of fla-
40 Huh K, Kim JA, Yong CS, Lee NJ, Lee DU: In vitro effects of hydroxybenzaldehydes from
39 Zanardi A: A phytochemical approach to huper-
38 Chopin P, Briley M: Effects of four non-cho-
37 Woodruff-Pak DS, Vogel RW 3rd, Wenk GL:
36 Rahman K: Garlic and aging: New insights
35 Chopin P, Briley M: Effects of four non-cho-
34 Woodruff-Pak DS, Vogel RW 3rd, Wenk GL:
33 Woodruff-Pak DS, Vogel RW 3rd, Wenk GL:
32 Breuer S: The role of flavonoids in the regu-
31 Metodiewa D, Koska C: Reactive oxygen spe-
30 Kennedy DO, Scholey AB: Ginseng: Potential
29 Kennedy DO, Scholey AB: Ginseng: Potential
28 Fahn S, Cohen G: The oxidant stress hypothe-
27 Metodiewa D, Koska C: Reactive oxygen spe-
26 Kandaswami C, Middleton E Jr: Free radical scavenging and antioxidant activity of plant
25 Kim H, Kim SY, Kim YH, Kim SY, Kim HP: Effects of naturally occurring flavonoids
24 Kurukuri K, Inagami H, Inoue S, Okazaki T,
23 Kim H, Kim YS, Kim SY, Suk K: The plant
22 Lee H, Kim YO, Kim SY, Kim H, Noh HS,
21 Hamada H, Hiramatsu M, Edamatsu R, Mori
20 Kennedy DO, Scholey AB: Ginseng: Potential
19 Lim JH, Wen TC, Matsuda S, Tanaka J, Mae-
18 Fahn S, Cohen G: The oxidant stress hypothe-
17 Sweeney JE, Bachman ES, Coyle JT: Effects of
16 Ha HJ, Shin SM, Lee SK, Kim JS, Shin US,
15 Kaibo M, Matsuda H, Tanaka M, Kimura Y,
14 Kaibo M, Matsuda H, Tanaka M, Kimura Y,
13 Kim H, Kim YS, Kim SY, Kim YH, Kim SY,
12 Bastianetto S, Ramassamy C, Dore S, Christen
11 Kandaswami C, Middleh T J r : Free radical scavenging and antioxidant activity of plant
10 Kim H, Kim YS, Kim SY, Suk K: The plant
9 Sweeney JE, Bachman ES, Coyle JT: Effects of
8 Sweeney JE, Bachman ES, Coyle JT: Effects of
7 Noda K: Ginkgo biloba extract protects brain
6 Huh K, Kim JA, Yong CS, Lee NJ, Lee DU: In vitro effects of hydroxybenzaldehydes from
5 Chang YL, Shen JN, Wung BS, Cheng JJ, Jiang
3 Kim H, Kim SY, Kim YH, Kim SY, Kim HP: Effects of naturally occurring flavonoids
2 Kaibo M, Matsuda H, Tanaka M, Kimura Y,
1 Kaibo M, Matsuda H, Tanaka M, Kimura Y,