Mu-Opioid Receptor-Mediated Phosphorylation of IκB Kinase in Human Neuroblastoma SH-SY5Y Cells

Andrew M.F. Liu Yung H. Wong

Department of Biochemistry, Molecular Neuroscience Center, and Biotechnology Research Institute, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China

Key Words
Mu-Opioid receptor · Nuclear factor-κB · Inhibitor-κB kinase · Mitogen-activated protein kinase · Calmodulin-dependent protein kinase · Src kinase

Abstract
Opioid receptors are involved in regulating neuronal survival. Here we demonstrate that activation of the μ-opioid receptor in human neuroblastoma SH-SY5Y cells led to the phosphorylations of IκB kinase (IKK) and p65, denoting the stimulation of the nuclear factor-κB (NFκB) transcription factor. This response was mediated through pertussis toxin-sensitive G proteins. The μ-opioid-induced IKK phosphorylation required extracellular signal-regulated protein kinase, phosphatidylinositol 3-kinase and c-Src. Moreover, c-Jun N-terminal kinase and calmodulin-dependent kinase II also participated in the IKK activation, despite the lack of involvement of phospholipase Cβ and protein kinase C. These data suggest that the μ-opioid receptor is capable of simulating NFκB signaling via the phosphorylation of IKK and p65 in human neuroblastoma SH-SY5Y cells.

Introduction
Narcotic analgesics such as morphine and other opiates exert diverse physiological responses through the multiple G protein-coupled opioid receptors present in both central and peripheral nervous systems. Each of the three types of opioid receptors (μ, δ and κ) is capable of regulating diverse intracellular effectors through their associated G proteins [1]. Prolonged activation of opioid receptors invariably leads to the development of opiate tolerance and dependence. The molecular mechanism of opiate addiction is extremely complex and involves changes in the activity as well as expression of different types of cellular proteins in target neurons [2]. Increasing evidence indicates that the opioid receptors can regulate transcription in different cell types. Opioid-induced transcriptional regulation can proceed via multiple pathways including those involving the mitogen-activated protein kinases [3–5] and signal transducer and activator of transcription (STAT) [6, 7].

The nuclear factor-κB (NFκB) is a ubiquitously expressed mammalian transcription factor which translocates from the cytosol to the nucleus upon phosphorylation and activation by upstream regulators. In SH-SY5Y human neuroblastoma cells, NFκB can be activated by a wide variety of cell surface receptors and signaling mol-
Activation of IKK by μ-Opioid Receptor

Materials and Methods

Materials

Human neuroblastoma SH-SY5Y cells were purchased from American Type Culture Collection (ATCC number: CRL-22666). Cell culture reagents were from Invitrogen (Carlsbad, Calif., USA). Pertussis toxin (PTX) was from List Laboratories (Campbell, Calif., USA), [D-Ala²,N-Me-Phe³,Gly⁵-ol]enkephalin (DAMGO), D-Phe-Cys-Tyr-D-Trp-Orn-Thr-NH₂ (CTOP), Tyr-D-Pen-Gly-Phe-D-Pen (DPDPDE), (±)-trans-U-50488 methanesulfonate (U50488), orphanin FQ (OFQ) and all other chemicals were purchased from Sigma-Aldrich (St. Louis, Mo., USA) or CalBiochem (San Diego, Calif., USA). Various antisera were products of Cell Signaling Technology (MA) and Amersham Biosciences (Piscataway, N.J., USA).

Cell Culture and Western Blot

Human neuroblastoma SH-SY5Y cells were maintained at 37°C in a mixture (1:1) of Eagle’s minimal essential medium (MEM) and Ham’s F-12 medium supplemented with 10% (v/v) fetal bovine serum (FBS), 50 U/ml penicillin, and 50 μg/ml streptomycin. One day before assay, SH-SY5Y cells were seeded into 6-well plates at a density of 4 × 10⁵ cells per well. The cells were serum-starved for 4 h and subsequently incubated with DAMGO at various concentrations and for different periods. Where indicated, PTX (100 ng/ml) treatment was performed 4 h before agonist application. The cells were then lysed in 150 μl of lysis buffer containing 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 100 mM NaCl, 1% Triton X-100, 40 mM Na₃VO₄, 200 μM NaN₃, 4 μg/ml aprotinin, 100 μM phenylmethylsulfonyl fluoride, and 2 μg/ml leupeptin. When kinase inhibitors were examined, the cells were pretreated with different kinase inhibitors for 30 min in serum-free medium. Clarified lysates (40 μg) were resolved on 12% SDS-polyacrylamide gels and transferred to nitrocellulose membrane (BioRad, Calif., USA). Phospho-p55-Ser⁵³⁶, p55, phospho-IKKα-Ser¹⁸⁰/IKKβ-Ser¹⁸¹ and IKKα were detected by specific primary antisera and horseradish peroxidase-conjugated secondary antisera. The immunoblots were visualized by chemiluminescence with the ECL kit (Amersham). Images detected on X-ray films were quantified by densitometric scanning using ImageJ software.

Statistical Analysis

Data were expressed as mean ± SEM of at least three independent sets of experiments. The probability of observed difference being a coincidence was evaluated by ANOVA and paired t test using the KyPlot software. Differences at values p < 0.05 were considered significant.

Results

μ-Opioid Receptor Employs Gᵢₒ Proteins to Stimulate NFkB Phosphorylation in Human Neuroblastoma SH-SY5Y Cells

We began our study by determining the ability of a μ-selective opioid peptide, DAMGO, to induce phosphorylations of IKKα/β and NFkB (the p65 subunit) in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were challenged with a saturating concentration of DAMGO (100 nM) for various time periods before lysis. Phosphorylations of IKKα/β and NFkB in the cell lysates were determined by immunoblot analysis using phosphospecific antisera. Both IKKα/β and p65 became phosphorylated upon treatment with DAMGO for 5 min, reaching a peak at around 15 min (approximately 2-fold increase) and the phosphorylations were sustained up to 30 min (fig. 1). Activation of the μ-opioid receptor in SH-SY5Y cells thus appeared to induce a rapid and sustained activation of IKKα/β and p65. The agonist-induced phosphorylations of IKKα/β and p65 were characterized by a dose-dependency on the concentration of DAMGO, reaching maximum activity at 10 nM (fig. 2). The DAMGO-induced phosphorylation of IKKα/β was more robust than that of NFkB. Hence, in subsequent experiments we focused on examining DAMGO-induced phosphorylation of IKKα/β in SH-SY5Y cells under optimal conditions (100 nM; 10 min). To examine if the DAMGO-induced phosphorylation of IKKα/β required Gᵢ proteins, we pre-treated the SH-SY5Y cells with PTX prior to stimulation with DAMGO. As shown in figure 3a, PTX treatment completely suppressed the DAMGO-induced phosphorylation of IKKα/β. This result indicated that the DAMGO-induced phosphorylation of IKKα/β was pri-
marily mediated via endogenous PTX-sensitive G\textsubscript{i/o} proteins. Moreover, the IKK\textsubscript{α/β} phosphorylation was blocked in the presence of 10 \(\mu\)M CTOP (a specific \(\mu\)-opioid antagonist) or 10 \(\mu\)M naloxone (a non-selective opiate antagonist), confirming the requirement of activated \(\mu\)-opioid receptors (fig. 3b).

To investigate whether other opioid receptors also activate NF\textsubscript{κB}, we stimulated SH-SY5Y cells with different specific agonists (100 nM): Tyr-D-Pen-Gly-Phe-D-Pen (DPDPE; \(\delta\)-opioid agonist), trans-(\(±\))-U50,488 methane sulfonate (U50488; \(\kappa\)-opioid agonist) and orphanin FQ (OFQ; ORL agonist). Apart from DAMGO, OFQ was also capable of inducing IKK phosphorylation (fig. 3c). On the other hand, both \(\delta\)- and \(\kappa\)-opioid receptor ligands failed to activate IKK\textsubscript{α/β} in SH-SY5Y cells.

DAMGO-Induced Phosphorylation of IKK\textsubscript{α/β} Required the Participation of Multiple Signaling Molecules

Activation of the \(\mu\)-opioid receptor has been shown to regulate multiple signaling pathways, several of which involve mitogen-activated protein kinases (MAPKs) such as the extracellular signal-regulated protein kinase (ERK) [3], c-Jun N-terminal kinase (JNK) [4], p38 MAPK [5], protein kinase C (PKC) [11] and Src tyrosine kinase [4]. To determine if any of these kinases are required for DAMGO-induced phosphorylation of IKK\textsubscript{α/β}, we examined the effects of specific inhibitors on \(\mu\)-opioid receptor-elicited IKK\textsubscript{α/β} phosphorylation. The results in figure 4a illustrate the possible involvement of ERK and JNK, but not p38 MAPK, in mediating DAMGO-induced phosphorylation of IKK\textsubscript{α/β}. Inhibition of ERK kinase 1/2 (also known as MEK1/2) and JNK by U0126 (10 \(\mu\)M) and SP600125 (30 \(\mu\)M), respectively, abolished the DAMGO-induced phosphorylation of IKK\textsubscript{α/β}. In contrast, the inactive analogues of U0126 and SP600125 (U0124, 10 \(\mu\)M; SP600-ve, 30 \(\mu\)M) were ineffective. A specific inhibitor of p38 MAPK (SB202190; 10 \(\mu\)M) and its inactive analogue (SB202474; 10 \(\mu\)M) were unable to suppress the DAMGO response. These results suggest that ERK and JNK cascades are able to provide a relay from the \(\mu\)-opioid receptor to the NF\textsubscript{κB} pathway.
Since activation of NFκB can proceed via PI3K [12], while activation of μ-opioid receptors can lead to the stimulation of PI3K [4], SH-SY5Y cells were pretreated with two specific PI3K inhibitors, wortmannin (100 nM) or LY294002 (10 μM) for 30 min before DAMGO stimulation. As shown in figure 4b, the DAMGO-induced IKKα/β phosphorylation was effectively blocked by both inhibitors, supporting the involvement of PI3K in this pathway.

The μ-opioid receptor has previously been demonstrated to regulate phospholipase C (PLCβ) [13], PKC [11], and calmodulin [14]. A panel of specific inhibitors was therefore used to assess the possible involvement of these signaling components in DAMGO-induced phosphorylation of IKKα/β. Inhibition of PLCβ and PKC by U73122 (10 μM) and calphostin C (100 nM), respectively, did not affect the DAMGO-induced phosphorylation of IKKα/β (fig. 4c). However, the DAMGO-induced response was attenuated by treating the SH-SY5Y cells with the calmodulin-dependent kinase II (CaMK-II) inhibitor, KN62 (10 μM; fig. 4c). The inactive analogue of KN62, KN92, was unable to suppress the DAMGO-induced phosphorylation of IKKα/β.

In the activation of NFκB by the G_i-coupled dopamine D_2 receptor, the participation of c-Src is clearly evident [15]. Interestingly, activation of the μ-opioid receptor has been shown to stimulate c-Src in SH-SY5Y cells [4]. Thus, we sought to investigate if c-Src is also involved in DAMGO-induced phosphorylation of IKKα/β. Blockade of Src family tyrosine kinases by two selective inhibitors, PP1 and PP2, significantly abrogated μ-opioid receptor signaling to IKKα/β (fig. 4d). In contrast, PP3, the inactive analogue of PP1 and PP2, had no effect under identical conditions. These results support the requirement of Src kinases in the pathway.

Discussion

In the central nervous system, many processes including synaptic transmission, neuronal plasticity, as well as neuronal survival and differentiation appear to involve NFκB [16]. In neuroblastoma SH-SY5Y cells, μ-opioid agonists have protective effects against serum withdrawal-induced cell death. Iglesias et al. [17] have reported that activation of the μ-opioid receptor promotes neuronal survival via a G_i/o-coupled, PI3K/Akt-dependent signaling cascade. These anti-apoptotic effects are likely to be regulated by NFκB. The present study clearly demonstrates that activation of G_i-coupled μ-opioid receptors...
can lead to the phosphorylation of IKK and p65 in neuroblastoma SH-SY5Y cells. These results are in agreement with the findings by Hou et al. [10], wherein they showed that DAMGO upregulates the DNA binding activity of NFκB in primary cultures of rat cortical neurons.

A number of Gi-coupled receptors are known to possess the ability to stimulate NFκB activity [12, 15], but the precise mechanism by which these receptors modulate NFκB signaling is poorly understood. The Giβγ-sensitive PI3K appears to be important in Gi-mediated activation of NFκB. We have previously shown that activation of the μ-opioid receptors in SH-SY5Y cells can indeed lead to the phosphorylation of Akt [4]. This downstream effector, Akt, is fully capable of regulating IKKβ and transactivating the p65 subunit [18], and, hence, activating the NFκB cascade. Indeed, the formyl peptide [12] receptor has been shown to activate NFκB through the PI3K/Akt pathway. Our results suggest that the μ-opioid receptor may also employ a PI3K-dependent pathway to regulate IKK.

Besides PI3K/Akt, MAPKs can also participate in the NFκB signaling cascade [19]. MAPKs are important loci for signal integration [20]. The abilities of opioid receptors to stimulate MAPK activities have clearly been documented [3–5]. Furthermore, Zhao et al. [21] have revealed that ERK can directly activate the IKK complex. Indeed, ERK is involved in the activation of IKK/NFκB by Gβγ-coupled dopamine D2 receptor [15]. The participation of ERK is similarly observed in DAMGO-induced IKK phosphorylation in SH-SY5Y cells wherein Raf-1 and MEK1/2 inhibitors significantly blocked the IKK activation.

In SH-SY5Y cells, DAMGO can also activate JNK [4], a MAPK which regulates inflammation and apoptosis. Linkage of JNK to the NFκB signaling cascade is pro-

Fig. 4. DAMGO-induced IKKα/β phosphorylation requires ERK, JNK, PI3K, c-Src and CaMK-II. a–d SH-SY5Y cells were treated with DMSO (vehicle control) and different kinase inhibitors for 30 min. Kinase inhibitors included Raf-1 kinase inhibitor (10 μM), U0126 (10 μM), U0124 (10 μM), SP600125 (30 μM), SB202190 (10 μM), SB202474 (10 μM), LY294002 (10 μM), wortmannin (Wort; 100 nM), U73122 (10 μM), U73343 (10 μM), KN62 (10 μM), KN92 (10 μM), calphostin C (Cal C; 100 nM), PP1 (25 μM), PP2 (25 μM) and PP3 (25 μM). Pre-treated cells were then stimulated with 100 nM DAMGO for 10 min. Cell lysates were collected and analyzed by immunoblotting for total and phosphorylated IKKα. The blots shown are from one single representative experiment, while the accompanying graphs are derived from three independent experiments. * Pretreatment with kinase inhibitor significantly attenuated DAMGO-induced IKK phosphorylations.
vided by the β-transducin repeat-containing protein (β-TrCP), which mediates the ubiquitination of the phosphorylated IκBα and acts synergistically with IKK on the transcriptional activity of NFκB [22]. Furthermore, the upstream activator of JNK, mitogen-activated protein kinase 1 (MEKK1), can directly activate the IKK complex [23]. The product of a novel NFκB-activating gene named CIKS (connection to IKK-complex and SAPK) serves to bring both the IKK complex and JNK into close proximity [24]. Although NFκB can be activated via the JNK pathway, no GPCR has yet been reported to utilize this mechanism. The ability of SP600125, but not its inactive analogue, to attenuate DAMGO-induced IKK phosphorylation suggests that the µ-opioid receptor may employ JNK to regulate NFκB cascade in SH-SY5Y cells. Selective involvement of JNK in DAMGO-induced IKK phosphorylation is further illustrated by the ineffectiveness of inhibitors against p38 MAPK. It remains to be demonstrated how signals from ERK and JNK are integrated for the regulation of IKK/NFκB.

Another interesting aspect of DAMGO-induced IKK phosphorylation in SH-SY5Y cells pertains to the involvement of CaMK-II; KN62, but not KN92, effectively suppressed the response. The involvement of CaMK-II has been demonstrated in phorbol ester-induced activation of IKK [25]. Although activation of the µ-opioid receptor can lead to the stimulation of PLCβ [13] and PKC [11], neither appears to be responsible for mediating the CaMK-II dependency of IKK phosphorylation. The µ-opioid receptor has been shown to associate with calmodulin directly [14]. The binding of agonist to the µ-opioid receptor leads to an elevation in cytosolic Ca^{2+} [26] and the subsequent activation of calmodulin [14] and its downstream effectors including CaMK-II. Thus, this feature of the µ-opioid receptor provides an alternative route to activate IKKαβ, independent of PLCβ and PKC. It should also be noted that despite the presence of δ-opioid receptors in SH-SY5Y cells [27] and its ability to bind calmodulin [14], the δ-selective agonist could not induce IKK phosphorylation (fig. 3c). This difference may in part be due to the distinct requirement for PI3K in µ-opioid receptor-mediated signaling, as in the regulation of JNK [4].

We have also clearly identified that DAMGO-induced IKK activation is mediated through c-Src. Both Gβγ [28] and Go, [29] subunits are capable of inducing c-Src activation. Crosstalk between signaling cascades are also crucial in c-Src activation. CaMK-II is one of many signaling intermediates which can transactivate c-Src [30]. c-Src activation can lead to the tyrosine phosphorylation of IKK and the subsequent stimulation of NFκB activity [31]. Moreover, the ability of c-Src to regulate MAPKs [28] and PI3K [32] provides alternative routes for activating IKK/NFκB. Hence, c-Src serves as an integrator for several signaling pathways and connects GPCRs with the IKK/NFκB pathway.

In conclusion, this study provides evidence that the µ-opioid receptor can induce phosphorylation of IKK and p65 via PTX-sensitive G proteins leading to the activation of the NFκB signaling cascade. Moreover, the activation of IKK/NFκB by the µ-opioid receptor is channeled through numerous signaling intermediates, including PI3K/Akt, ERK, JNK, CaMK-II, and c-Src. Even though JNK cascade has long been associated with NFκB signaling, the mechanism of how JNK modulates the IKK activities is still unclear. In addition, the special feature of µ-opioid receptor to interact with calmodulin allows CaMK-II to affect DAMGO-induced activation of IKK/NFκB. Since the opioid receptors are involved in regulating neuronal survival [17] and development [33], it remains to be demonstrated if the IKK/NFκB pathway plays a central role in these processes.

Acknowledgments

This work was supported in part by grants from the Research Grants Council of Hong Kong (HKUST 6095/01M, 2/99C, and 3/03C), the University Grants Committee (AoE/B-15/01), and the Hong Kong Jockey Club.
References

21. Liu/Wong