Introduction

Pseudomyxoma peritonei (PMP) is an uncommon neoplastic condition characterized by the seeding of the peritoneum by mucin-secreting tumour cells and accumulation of mucin in the peritoneal cavity [1, 2]. Since the first report by Rokitansky in 1842 [3], the most common underlying causes of this condition are mucinous neoplasms of the appendix and ovary [1, 2]. On the other hand, intraductal papillary mucinous neoplasm (IPMN) of the pancreas is characterized clinicopathologically by...
papillary growth and mucin production within the pancreatic duct system [4, 5]. With regard to the combination of both mucinous neoplasms, only a single case of PMP associated with leakage of pancreatic duct mucus by operation of IPMN has been reported [6]. In this report, we describe an unusual case of PMP accompanied by IPMN of the pancreas, in which PMP was successfully treated by intraperitoneal hyperthermic chemoperfusion (IHCP) with cisplatin, etoposide, and mitomycin C, followed by intravenous gemcitabine administration.

Case Report

A 53-year-old man was admitted to our hospital on February 28, 2002 because of abdominal fullness and loss of appetite. There was no history of chronic alcohol abuse, steatorrhea, diabetes, or appendectomy. Family history, including pancreatic disease, was not remarkable. On admission, physical examination showed distended abdomen and massive ascites. Laboratory data showed hypoproteinaemia (total protein, 6.1 g/dl; normal, 6.7–8.3 g/dl) and mild elevation of C-reactive protein (0.88 mg/dl; normal, <0.17 mg/dl), carbohydrate antigen 19–9 (CA19–9, 40 U/ml; normal, <37 U/ml), hyaluronic acid (64 ng/ml; normal, <50 ng/ml) and carbohydrate antigen 125 (CA125, 123 U/ml; normal, <28.1 U/ml). Other routine haematological and biochemical tests were within the normal limits. Abdominal ultrasonography and computed tomography showed massive ascites throughout the peritoneal space, with omental cake and a generalized thickening of the peritoneum, and a cystic lesion of the pancreas (fig. 1). No neoplastic lesions were noted in other organs, including the appendix. Upper gastrointestinal endoscopy and colonoscopy revealed only external compression effects. The aspirated ascitic fluid sample was exudative fluid, containing high concentrations of CA19-9 (11,633 U/ml), carcinoembryonic antigen (2,150 ng/ml), and hyaluronic acid (8,940 ng/ml). Cytological examination of the sample showed a cluster of mucinous atypical cells showing papillary growth, which were positive for periodic acid-Schiff reaction and Alcian blue staining without hyaluronidase digestibility, but were negative for calretinin stain. Culture of the fluid sample showed no bacterial growth. Endoscopic retrograde pancreatography revealed a single cystic lesion measuring 20 mm in diameter that communicated with the main pancreatic duct, with intracystic defects suspected to be a mural nodule measuring 7 mm in diameter and mucous plaques, at the pancreatic tail (fig. 2). The main pancreatic duct was slightly dilated from the head to the body of the pancreas. No contrast image was obtained for the pancreatic duct upstream from the cystic lesion. Based on the clinical features and laboratory and imaging data, a provisional diagnosis of PMP accompanied by IPMN of the pancreas was made. At exploratory laparotomy, abundant yellowish ascitic fluid and multiple gelatinous nodules of various sizes were identified within the peritoneal cavity. Gross examination showed no mass in the gastrointestinal tract or appendix. It was difficult to prove that the IPMN of the pancreas had caused PMP based on inspection and palpation of the pancreas during operation. As complete resection of the peritoneal and omental implants was impossible, part of the thickened omentum, 8 cm in diameter, was excised for pathological examination. During surgery, IHCP was performed using 300 mg of cisplatin, 200 mg of etoposide, and 20 mg of mitomycin C for 60 min under hyperthermic conditions (42°C). Microscopically, the specimen obtained from the omentum was composed of fibrous tissue with abundant fibrous tissue.
pools of mucoid material, in which mucinous cells showed nuclear pleomorphism and occasionally formed tubular or papillary projections (fig. 3). These features were consistent with PMP. The patient had an uneventful recovery, and at 26 days after surgery, 100 mg of cisplatin was again administered by intraperitoneal injection through the held catheter. Adhesiotomy was performed for adhesive ileus in June 11, 2002. Subsequently, the patient received 24 courses of postoperative chemotherapy by gemcitabine (1,000 mg/m²/week every 3/4 weeks) from June 2002 to May 2004. Computed tomography showed encapsulated fluid and a large cystic lesion of the pancreas, but no increase in ascites or recurrence of tumour at 24 months after surgery (fig. 4). At the most recent clinical check-up, the patient remains in good general condition with a mildly elevated serum concentration of CA125 (43 U/ml), but operation for IPMN is under consideration because of the progressive enlargement of the lesion in the pancreatic tail.

Discussion

PMP is characterized by massive ascites with dissemination of mucinous adenocarcinoma in the peritoneal cavity [1–3], as was found in our patient. PMP commonly arises from mucinous tumours of the appendix and occasionally from the ovary [1–3]. Interestingly, our patient had IPMN of the pancreas, which was diagnosed by endoscopic retrograde pancreatography and computed tomography that showed typical findings during follow-up, although not histopathologically, while the appendix showed no abnormal findings during exploratory laparotomy. PMP is rarely reported to be associated with mucinous adenocarcinoma of the pancreas, including mucinous cystadenocarcinoma and IPMN [6–10] (table 1). IPMNs of the pancreas are characterized by cystic dilatation of the main and/or branch pancreatic duct as a result of excessive production and disturbance in the draining of mucin [4, 5]. Overall, IPMNs are associated with favourable prognosis, but approximately 50% of cases are associated with invasive carcinomas [4]. It has been reported that tumour size larger than 30 mm and mural nodule size larger than 5 mm are predictive for the diagnosis of malignant IPMNs [11]. Considering the intracystic mural nodule and the progressive enlargement of the cystic lesion, malignancy cannot be denied in our patient. To date, there is only one report of PMP originating from IPMN of the pancreas, in which PMP possibly was associated with intraoperative leakage of the pancreatic juice [6]. In addition, it has been demonstrated that dissemination of mucinous adenocarcinoma may be caused iatrogenically not only by surgical intervention but also by endosonographically guided fine-needle aspiration biopsy [12, 13]. In our case, IPMN of the pancreas was unknown prior to presentation, and it is possible that PMP was associated with latent rupture or fistula formation of the IPMN into the peritoneal cavity. However, one cannot completely exclude the possible presence of another neoplasm elsewhere as the source of PMP in our case, because it is known that synchronous or metachronous malignancy develops in various organs in IPMN [5].

Fig. 3. Microscopic examination of the omentum showing mucinous adenocarcinoma in abundant pools of mucoid material (haematoxylin and eosin staining, ×40).

Fig. 4. Follow-up computed tomography showing encapsulated fluid and extensive dilatation of the pancreatic duct, but no sign of progression of pseudomyxoma peritonei.
Several treatment modalities including surgery, radiotherapy, and chemotherapy have been utilized in the management of PMP with varying degrees of success. Modern treatments include peritonectomy and IHCP [1, 2, 14]. A recent report by Sugarbaker [15] has suggested that an aggressive approach consisting of ‘maximal’ surgical debulking and ‘maximal’ regional chemotherapy has an impact on the outcome of the disease, but the optimal management of the disease remains controversial. In our case, extensive cytoreductive surgery was not performed for two reasons; difficulty in removal of all visible disease and attempt to ensure a good postoperative quality of life. PMP usually shows no lymphatic or haematogenous spread, and intraperitoneal chemotherapy permits delivery of high concentrations of the drug to the peritoneal cavity [2]. In addition, the penetration of the drug into tissue is augmented by heat [16]. Thus, most investigators have suggested the benefit of IHCP [1, 2, 14, 16]. Our patient received IHCP with the use of cisplatin, etoposide, and mitomycin C, followed by systemic chemotherapy with gemcitabine, which has been used also for the treatment of pancreatic cancer peritonitis and explored for a wider role [17, 18]. The patient has been doing well with no evidences of progression of PMP or serious side effects for 2 years. Given these results, this combined chemotherapeutic regimen seems to be effective for treatment of PMP and improves quality of life. On the other hand, the antitumour treatment had no effects on IPMN of the pancreas. In gastrointestinal malignancies with carcinomatous peritonitis, it is known that the effect of local and systemic chemotherapy often differs between the primary site and malignant ascites [19].

In conclusion, we reported an unusual case of PMP accompanied by IPMN of the pancreas, in which PMP was successfully managed by combination chemotherapy with hyperthermia. Randomised clinical trials are needed to evaluate the true role of IHCP followed by systemic chemotherapy in PMP and associated malignancy.

References

Table 1. Summary of reported cases of PMP combined with PT

<table>
<thead>
<tr>
<th>Reference</th>
<th>Age/Sex</th>
<th>PT</th>
<th>Pancreatectomy</th>
<th>Chemotherapy for PMP</th>
<th>Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>89/M</td>
<td>MA</td>
<td>–</td>
<td>–</td>
<td>>7 months</td>
</tr>
<tr>
<td>8</td>
<td>57/M</td>
<td>CA</td>
<td>–</td>
<td>–</td>
<td>2 weeks</td>
</tr>
<tr>
<td>9</td>
<td>ND/F</td>
<td>MA</td>
<td>ND</td>
<td>ND</td>
<td>2 years</td>
</tr>
<tr>
<td>6</td>
<td>49/M</td>
<td>IPMN</td>
<td>(partial → total)</td>
<td>SC (5-FU, CBDCA)</td>
<td>>17 months</td>
</tr>
<tr>
<td>10</td>
<td>55/F</td>
<td>MCA</td>
<td>(distal)</td>
<td>IPC (CDDP)</td>
<td>>4 years</td>
</tr>
<tr>
<td>Present case</td>
<td>53/M</td>
<td>IPMN</td>
<td>–</td>
<td>IHCP (CDDP, ETP, MMC) + SC (GEM)</td>
<td>>2 years</td>
</tr>
</tbody>
</table>

PT = Pancreatic tumour; PMP = pseudomyxoma peritonei; ND = not described; MA = mucinous adenocarcinoma; CA = colloid adenocarcinoma; IPMN = intraductal papillary mucinous neoplasm; MCA = mucinous cystadenocarcinoma; SC = systemic chemotherapy; 5-FU = 5-fluorouracil; CBDCA = carboplatin; IPC = intraperitoneal chemotherapy; CDDP = cisplatin; IHCP = intraperitoneal hyperthermic chemoperfusion; ETP = etoposide; MMC = mitomycin C; GEM = gemcitabine.

Pseudomyxoma Peritonei and IPMN

Pancreatology 2005;5:470–474

